• 제목/요약/키워드: Inertial measurement device

검색결과 39건 처리시간 0.032초

IMU센서를 이용한 실내 위치 인식 교육용 장비 및 응용 (Education Equipment and Its Application for Indoor Position Recognition Using Inertial Measurement Unit Sensor)

  • 서보인;유윤섭
    • 실천공학교육논문지
    • /
    • 제10권2호
    • /
    • pp.119-124
    • /
    • 2018
  • IMU(Inertial Measurement Unit) 센서의 가속도와 각속도를 이용하여 거리측정을 하고 측정값을 이용하여 사용자가 원하는 실내공간에 적용하여 사용자 혹은 디바이스가 실내공간을 인식하는 교육용 장비를 소개한다. 본 교육장비를 이용해서 다양한 위치 인식 및 추적 알고리즘을 학습할 수 있고 창의적 공학설계 작품을 구현할 수 있다. IMU 센서의 데이터 값을 $I^2C$(Inter-Integrated Circuit)을 통해 MCU(microcontroller unit)에 전송하고 필터와 연산방식을 통해 데이터 값을 처리 후 실내 위치 인식 알고리즘을 통해 위치인식을 한다. 그리고 무선통신을 이용하여 처리된 값을 송수신하여 사용자가 인식하도록 설계한다. 본 교육 장비를 이용하여 "IMU센서를 이용하여 이동거리를 산출과 데이터 값을 이용한 가상공간 구현 및 인식"의 사례를 소개하고 그 설계를 기반하여 다양한 창의적 공학설계 적용에 대해서 논한다.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

관성측정장치를 이용한 동태손상증후군의 평가 가능성에 관한 고찰 (Feasibility on Evaluation of Movement System Impairment Syndromes by MEMS-IMU)

  • 김현호;김정균;서재호;박영재;박영배
    • 대한한의진단학회지
    • /
    • 제15권3호
    • /
    • pp.223-234
    • /
    • 2011
  • Objectives: This study shows feasibility and suitability of a microelectromechanical system inertial measurement unit(MEMS-IMU) as a helpful measurement device for evaluating movement system impairment syndrome. Methods: We reviewed articles of two fields in this study. First, we reviewed articles about movement system impairment syndrome(MSIS) as a brand new viewpoint of diagnosing and treating musculoskeletal pain. Second, we reviewed articles about conventional motion analysis system and inertial measurement unit(IMU) to show the superiority of IMU in analyzing the human movement. All papers were searched by SciVerse, world largest search engine and database about many academic fields including engineering and medicine. Results: Some physical quantities of human motions can be useful to the diagnosis of MSIS, and those data can be obtained by the MEMS-IMU without the weak points of the conventional motion analysis systems. Conclusions: Using MEMS-IMU as a measurement unit for diagnosing and evaluating MSIS is feasible and can be extended to many further studies.

관성센서 기반의 무선보행측정시스템 개발 및 노인 당뇨 환자 보행 진단에의 응용 (Development of Wireless Ambulatory Measurement System based on Inertial Sensors for Gait Analysis and its Application for Diagnosis on Elderly People with Diabetes Mellitus)

  • 정지용;양윤석;원용관;김정자
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.38-46
    • /
    • 2011
  • 현재 보행 분석에 있어 많이 사용되고 있는 3차원 동작 분석기의 경우, 여러 대의 카메라와 넓은 공간이 필요하다는 공간적 제한성과 함께 고가로 접근성이 용이하지 않으며, 측정 시 준비 과정이 복잡하여 이를 임상에 적용하기에는 많은 제약점이 있다. 본 연구에서는 이를 해결하기 위해 임상에서 용이하게 하지(족부) 이상을 진단하기 위한 관성 센서 기반의 3차원 무선 보행 측정 시스템을 개발하고, 당뇨병 노인 환자 10명을 대상으로 시스템의 타당성을 평가하였다. 개발된 시스템은 보행 특성을 측정하는 관성 측정 장치, 관성 데이터를 수집 및 처리하는 마이크로 컨트롤러, 측정된 데이터를 PC로 전송하는 블루투스로 구성된 무선 보행 측정 모듈과, 수신 데이터의 저장, 처리 및 분석을 위한 윈도우 응용 프로그램 모듈로 구성되었다. 본 연구에서 개발된 시스템은 하지(족부) 이상 진단의 실제 임상에 손쉽게 활용할 수 있을 뿐만 아니라, 스포츠 과학, 재활 등과 같은 인간의 3차원 움직임 분석을 필요로 하는 다양한 분야에 널리 활용할 수 있을 것이다.

외부 마찰열에 의한 내부 관성측정장치의 과도 열전달 해석 (Transient heat transfer analysis of inertial measurement devices by outside frictional heat)

  • 탁승민;박지원;강민규;박동진;이종수;이석순
    • 항공우주시스템공학회지
    • /
    • 제4권1호
    • /
    • pp.32-37
    • /
    • 2010
  • Guided weapon is very excellent strategy system than conventional weapons. Recently, several devices and a technology developed much developing more, inertia measuring device is one example. Inertia measuring device is device that is used to improe more accuracy of guided weapon, this device is operated by sensors of inside. Sensors of inside are parts that is very sensitive about impact or shock, heat that interact when shoot, it is main purpose that verify durability of sensor by heat delivered from outside in this study.

  • PDF

국내 도로면 거칠기 특성 분류 기준에 관한 연구 (Classification of the Korean Road Roughness)

  • 최규재;허승진
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.115-120
    • /
    • 2006
  • A Korean Road Roughness Classification(KRC) method is proposed. Using a dynamic road profiling device equipped with the Accelerometer Established Inertial Profiling Reference(AEIPR) method, road profile measurement is performed on various types of public paved roads in Korea. The road profiling data are processed to classify the characteristics of Korean road roughness. The resultant Korean road roughness classification(KRC) is shown different characteristics compared to the road classification proposed by ISO, MIRA, and Wong. The proposed KRC is composed of 8 classes(A-H, very good-poor) based on the power spectral density and is in good agreements with the characteristics of Korean paved road roughness and can be used well in vehicle ride comfort simulation using domestic road profile.

Gait event detection algorithm based on smart insoles

  • Kim, JeongKyun;Bae, Myung-Nam;Lee, Kang Bok;Hong, Sang Gi
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.46-53
    • /
    • 2020
  • Gait analysis is an effective clinical tool across a wide range of applications. Recently, inertial measurement units have been extensively utilized for gait analysis. Effective gait analyses require good estimates of heel-strike and toe-off events. Previous studies have focused on the effective device position and type of triaxis direction to detect gait events. This study proposes an effective heel-strike and toe-off detection algorithm using a smart insole with inertial measurement units. This method detects heel-strike and toe-off events through a time-frequency analysis by limiting the range. To assess its performance, gait data for seven healthy male subjects during walking and running were acquired. The proposed heel-strike and toe-off detection algorithm yielded the largest error of 0.03 seconds for running toe-off events, and an average of 0-0.01 seconds for other gait tests. Novel gait analyses could be conducted without suffering from space limitations because gait parameters such as the cadence, stance phase time, swing phase time, single-support time, and double-support time can all be estimated using the proposed heel-strike and toe-off detection algorithm.

헤드 트래킹 시스템을 이용한 가상 굴삭기의 편의 관측 시스템 개발 (Development of the Flexible Observation System for a Virtual Reality Excavator Using the Head Tracking System)

  • 레광환;정영만;웬치탄;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.27-33
    • /
    • 2015
  • Excavators are versatile earthmoving equipment that are used in civil engineering, hydraulic engineering, grading and landscaping, pipeline construction and mining. Effective operator training is essential to ensure safe and efficient operating of the machine. The virtual reality excavator based on simulation using conventional large size monitors is limited by the inability to provide a realistic real world training experience. We proposed a flexible observation method with a head tracking system to improve user feeling and sensation when operating a virtual reality excavator. First, an excavation simulator is designed by combining an excavator SimMechanics model and the virtual world. Second, a head mounted display (HMD) device is presented to replace the cumbersome large screens. Moreover, an Inertial Measurement Unit (IMU) sensor is mounted to the HMD for tracking the movement of the operator's head. These signals consequently change the virtual viewpoint of the virtual reality excavator. Simulation results were used to analyze the performance of the proposed system.

Egocentric Vision for Human Activity Recognition Using Deep Learning

  • Malika Douache;Badra Nawal Benmoussat
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.730-744
    • /
    • 2023
  • The topic of this paper is the recognition of human activities using egocentric vision, particularly captured by body-worn cameras, which could be helpful for video surveillance, automatic search and video indexing. This being the case, it could also be helpful in assistance to elderly and frail persons for revolutionizing and improving their lives. The process throws up the task of human activities recognition remaining problematic, because of the important variations, where it is realized through the use of an external device, similar to a robot, as a personal assistant. The inferred information is used both online to assist the person, and offline to support the personal assistant. With our proposed method being robust against the various factors of variability problem in action executions, the major purpose of this paper is to perform an efficient and simple recognition method from egocentric camera data only using convolutional neural network and deep learning. In terms of accuracy improvement, simulation results outperform the current state of the art by a significant margin of 61% when using egocentric camera data only, more than 44% when using egocentric camera and several stationary cameras data and more than 12% when using both inertial measurement unit (IMU) and egocentric camera data.

심정지 감지를 위한 다생체 신호 측정 웨어러블 디바이스 개발 (Multi-modal Wearable Device for Cardiac Arrest Detection)

  • 안현준;유승민;조경원;박훈기;김인영
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.330-335
    • /
    • 2017
  • Cardiac arrest is owing to the failure of the heart that makes the blood circulation stop. Arrested blood circulation prevents the supply of the oxygen and the glucose and it results the loss of consciousness and, finally, brain death. Many public institution installed the AED for emergency treatment, but, it is not efficient when the patient is alone. In this paper, we made multiplexed wearable device for cardiac arrest detection. With this device, we measure the individual's electrocardiography, heart sound and motion. If the cardiac arrest is detected, the device make a warning horn and transmit the signal for defibrillation. We obtain 98.33% of ECG data, 94.5% of PCG data and 98.38% of IMU data accuracy for each evaluation and 93.33% accuracy for integrated evaluation.