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1  |   INTRODUCTION

Many people suffer from spine and nerve diseases, some of 
which can be evaluated through physical activities. Walking is 
one of the most common physical activities; therefore, there has 
been increasing clinical and research interest in gait monitor-
ing. Gait analysis systems are employed both to evaluate patient 
health conditions and study the gait [1‒4]. Gait analysis is an 
effective clinical tool for a wide range of applications, such as 
assessing neurological diseases [5], the risk of falls [6], orthope-
dic disabilities, and rehabilitation progress [7,8]. Conventional 
clinical gait analysis methods are based on motion‐capture sys-
tems [9,10] and force plates [11], which offer a high accuracy 
in measuring gait events. Unfortunately, these approaches only 

provide information on a couple of steps, and they are highly 
expensive and space‐consuming. Inertial measurement units 
(IMUs) have recently been utilized in many walking studies be-
cause they are not time‐ or space‐consuming, are inexpensive, 
and can provide kinematic information [12]. IMUs include both 
accelerometers and gyroscopes, and can therefore be used to 
measure triaxial accelerations and rotations during gait events. 
The rich and continuous gait data acquired from IMUs provide 
a variety of information for clinical research, and demonstrate 
considerable potential for remote diagnosis.

Several spatiotemporal parameters, such as stride time, 
stance phase time, swing phase time, stride frequency, and 
stride length, must be determined for gait analysis [13‒15]. 
The gait cycle begins when the heel of one foot touches the 
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ground during the stepping process, and ends with the next 
step of the same foot. Each cycle includes both a stance phase 
and swing phase. The stance phase, during which the foot 
touches the ground, goes from heel‐strike (HS: when the heel 
touches the ground) to toe‐off (TO: when the toe lifts off the 
ground). The swing phase, during which the foot moves sep-
arately from the ground, goes from TO to the next HS of the 
same foot. On average, the stance and swing phases account 
for 60% and 40% of the gait cycle duration, respectively [16].

When both feet are in contact with the ground during the 
gait cycle, this is called the double‐support phase. When only 
the right or left foot is in contact with the ground, this is called 
the single‐support phase. As the walking speed increases, the 
swing phase becomes proportionally longer, and both the sin-
gle and double stance phases become shorter. A loss of the 
double stance indicates a transition from walking to running: a 
condition in which completely airborne phases occur with the 
body not touching the ground at all [17]. These concepts are 
illustrated in Figure 1.

To accurately identify and characterize these different 
phases of the gait cycle, gait events such as HS and TO must 
be detected. Recently, various methods have been proposed 
using IMUs attached to the foot, shank, or waist. The foot is 
likely to be a suitable location for detecting gait events, be-
cause it produces a clear distinction between the stance and 
swing phases and imposes very little restriction on muscle 
contractions and joint movements during walking [18‒20].

Several studies have reported methods to detect gait events 
using accelerometers or gyroscopes attached to various loca-
tions, such as the shank [21], neck [22], waist [23], and foot 
[14,18,19]. It is easier to detect gait events from the foot, be-
cause it is closer to the ground. The simplest gait event detection 
methods are peak identification and thresholding. More ad-
vanced methods involve signal processing and machine learning 
techniques such as neural networks [24], hidden Markov models 
[25], and Gaussian mixture models [26]. Machine learning re-
quires data for learning, and data collection is difficult because 
there are many differences depending on a person's gait.

For example, using the foot to detect the gait, Misu and others 
[18] employed a method to determine gait events by detecting 
HS using acceleration data and TO using angular velocity data. 

Angular velocity data have the significant advantage that they are 
not affected by gravity. However, gyroscopes consume a lot of 
power, and therefore, accelerometers are also increasingly being 
utilized. Mo and others [27] identified HS as the instant of peak 
resultant acceleration using a threshold, and identified TO as 
the moment at which the acceleration exceeds a threshold of 2g 
(g = gravitational acceleration). Khandelwal and others [19] pro-
posed a time‐frequency analysis of acceleration signals to detect 
HS and TO. Although these methods yield good performances, 
they are not sufficient to detect TO when IMUs are attached to 
the insole. Therefore, we propose an effective method to detect 
gait events using a smart insole with IMUs. This method detects 
HS and TO through a time‐frequency analysis by limiting the 
range. Figure 2 presents an overview of this method.

This paper is organized as follows: Section 2 presents the 
proposed HS and TO detection methods. The experiment and 
results are described in Section 3, and Section 4 discusses the 
results. Finally, conclusions are presented in Section 5.

2  |   MATERIALS AND METHODS

2.1  |  Gait data
We acquired gait data from seven healthy subjects (males) 
with average an age, height, and weight of 29 years, 175 cm, 
and 74 kg, respectively. The gait data consists of inertial data 
acquired from the left and right insoles and pressure data ac-
quired from the insoles.

Pressure sensors were placed at the outer toe, inner toe, 
inner heel, outer heel, and midfoot. These were used as com-
parison standards for gait events. Gait data were acquired using 
an MPU 9250 motion processing unit (InvenSense Inc.) with 
Three axes accelerometers, gyroscopes, and compasses. The 
accelerometers have a programmable range of 2g, 4g, 8g, and 
16g; and the gyroscopes can operate with ranges of 125 °/s, 
250 °/s, 500 °/s, and 1000 °/s. In the experiments, the accel-
erometer range was set to 8g, the gyroscope range to 1000 °/s, 
and the sampling frequency to 100 Hz, as shown in Figure 3.

2.2  |  Zero‐velocity update
The zero‐velocity update (ZUPT) method is widely em-
ployed to estimate the stance phase in pedestrian dead‐reck-
oning (PDR), a type of personal navigation system based 
on inertial sensors that does not require any infrastructure.F I G U R E  1   Gait cycle

Left leg

Right leg

Left 
toe off

Left 
heel strike Time

Left 
toe off

Left swing phase

Right swing phase

Left stance phase

Right stance phase

Double
support

Double
support

Double
support

Right
single support

Left
single support

Right 
heel strike

Right 
heel strike

Right 
toe off

F I G U R E  2   Overview of the proposed method

Inertial
measure

ment units
(IMUs)

Wavelet
transform

HS, TO 
detection

Zero-velocity
update

Energy density
spectrum

Limited HS,
TO range



48  |      KIM et al.

Skog [28] proposed a ZUPT method called the gen-
eral likelihood ratio test (GLRT), which employs a 
probability to determine whether the average magni-
tudes of the acceleration and angular velocity are below 
a certain threshold, as shown in (1). In this equation, 
an ∈ R3 and  �n∈ R3 denote the triaxial acceleration and 
angular velocity at the nth sample, respectively; �a and 
�� denote the accelerometer and gyroscope noise vari-
ances; respectively; γ denotes the threshold; and W is 
the window size [29].

Figure 4 shows an example of the results obtained 
using this method. Here, Acc denotes a composite accel-
eration signal and ZUPT is the estimated zero‐velocity 
duration.

The GLRT method yields a good performance for PDR. 
It is not significantly affected by a small number of false 
detections, but it can detect false gait events. ZUPT is de-
termined by the threshold γ, which varies according to the 
gait velocity, because the baseline increases, as shown in 
Figure 5A. In this study, we developed an adaptive ZUPT 
approach consisting of three stages. First, the gait signal 

periodically exhibits a high peak during each step. This 
peak is determined by the adaptive minimum‐maximum 
threshold. A new peak represents a local maximum when 
observing that the signal changes direction within a pre-
defined time interval. The new peak is distinguished by a 
false or true peak, and the procedure is defined as follows 
and illustrated in Figure 5B:

if (Thresholdmin < Peaknew){Peaksignal,n = Peaknew},
else {Peaknoise,n = Peaknew};
PBnoise = �{Peaknoise,n, Peaknoise,n–1, Peaknoise, n–2,  

Peaknoise, n–3};
PBsignal = �{Peaksignal,n, Peaksignal,n–1, Peaksignal,n–2, 

Peaksignal, n–3}; 
Thresholdmin = �PBnoise,median  +  (PBsignal,median  –   

PBnoise, median) × 0.6; 
Thresholdmax = �0.8  ×  Thresholdmax  +  0.1  ×  PBsignal,max 

+ 0.4 × PBsignal,median; 
if �(Thresholdmin  <  Peaknew  <  Thresholdmax) {Peaktrue  = 

Peaknew},
else {Peakfalse = Peaknew};

Second, the interval from the current Peaktrue to the next 
Peaktrue is one step, and the ZUPT threshold is determined 
based on the maximum speed of one step. Third, if there are 
two ZUPT intervals within one step, then the longest interval 
is the ZUPT interval.
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2.3  |  Time‐frequency analysis
The gait cycle is periodically repeated in four steps: stance 
(ST), TO, swing (SW), and HS. The HS step precedes ST, 
and the TO step follows ST [30]. The HS detection range is 
therefore selected as the one‐third section from the end point 
of the previous zero‐velocity region to the starting point of 
the present zero‐velocity region, and the TO range is selected 
as the one‐third section from the end point of the present 
zero‐velocity region to the starting point of the next zero‐ve-
locity region.

When HS and TO occur, physical events occur between 
the foot and ground, and these are detected using a time‐fre-
quency analysis. The time‐frequency characteristics of gait 
cycles have been utilized in previous studies [19,31]. The 
present study employs Acc to detect a gait event. However, 
Acc contains a lot of additional information, such as the 
movement signal and noise, especially during running. 
Therefore, it is better to detect HS using the x‐axis and TO 
using the z‐axis rather than by using Acc, because the x‐axis 
acceleration increases in the swing phase and decreases rap-
idly in HS. Furthermore, the z‐axis acceleration increases in 
TO, as shown in Figure 6.

Haar proposed the wavelet transform in the early 1900s [32]. 
The wavelet transform produces a time‐frequency decomposi-
tion of a signal, in which the individual signal components are 
separated. This approach enables peak detection to be performed 
more effectively than with the short‐time Fourier transform.

In the wavelet transform, mother wavelets are based on 
small waves with varying frequencies and limited durations. 
In this study, we employ the Morlet wavelet, which is widely 
utilized for analyzing biological signals for gait event detec-
tion. The Morlet wavelet is defined as in (3). Here, ω0 is the 
frequency and η is the time parameter [33‒35].

The continuous wavelet transform (CWT) is defined as a 
function of both the mother wavelet ψ0 (η) and signal xn, as in 
(4). In this equation, * denotes the complex conjugate, s is the 
wavelet scaling factor, δt is the (uniform) time spacing, and n 
is the localized time index.

Figure 7A depicts the results of applying the continuous 
wavelet transform to the composite acceleration signal with 
a varying scaling factor to detect gait events. The smaller the 
scale, the higher the frequency. Therefore, the representation 
at larger scales corresponds to lower‐frequency signal compo-
nents. This figure confirms that HS and TO occur regularly in 
the high‐frequency range. The energy density spectrum Eds was 

obtained from the coefficients of the CWT of the composite 
acceleration signal, as shown in (5), where s is the scale [34,35].

In the energy density spectrum obtained from the squares 
of the x‐axis and z‐axis acceleration signals, the largest 
peaks in the 20–40 scale range are denoted by STO and SHS, 
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respectively, as shown in Figure 7B. In this study, the maxi-
mum values of the CWT coefficients of STO and SHS within 
the HS and TO ranges are selected as the HS and TO points, 
as shown in Figure 7C.

3  |   EXPERIMENT AND RESULTS

To analyze the results of the proposed HS and TO detection al-
gorithms, we utilized data measured from triaxial inertial sen-
sors attached to the insole. Three walking and running datasets 
were constructed to evaluate the algorithm. These data were 
collected from seven male subjects aged 27–33 years. The sub-
jects were briefed on the purpose of the study and the method 
before their consent was obtained. Table 1 presents the ob-
tained mean and standard deviation of the time differences (in 
the number of samples) between the gait events (HS and TO) 

obtained by the inertial sensors, and the gait events (HS and 
TO) obtained by the pressure sensors on the toe and heel.

The proposed HS and TO detection algorithms were 
implemented in MATLAB, and yielded the largest error 
of three samples (0.03 seconds) for the running TO and an 
average of 0–1 samples (0–0.01 seconds) for the other gait 
tests (see Tables 1 and 2). The error in the running TO case 
is relatively large, because the gait speed is relatively high. 
This may lead to inaccuracies in the detection of gait signal 
events.

4  |   DISCUSSION

Gait parameters, such as the cadence, stance time, single‐
support time, and double‐support time, were calculated 
using the detected HS and TO events. The validity of the 
proposed gait analysis algorithm is verified by compar-
ing the parameters for 3‐, 4‐, and 5‐km/h walks on the 
treadmill.

As the treadmill speed increases, the cadence increases 
from 70 steps/min (3  km/h) to 90 steps/min (5  km/h), the 
stance phase time decreases, the single‐support time in-
creases, and the double‐support time decreases, as shown in 
Table 3. This result is similar to those of previous studies, 
in that when the gait speed increases the stance phase time 
decreases, the swing phase time increases, and the double‐
support time decreases. In fact, the double‐support time dis-
appears during running.

To analyze the three‐dimensional (3D) motion pattern 
of the continuous walking cycle, the measured gait accel-
eration and angular velocity signals were separated by the 
HS points of each individual walking step. Figure 8 depicts 
the resulting 3D kinematic pattern, which can be used to 
analyze the gait.

Walking
Left HS
MAE (STD)

Left TO
MAE (STD)

Right HS
MAE (STD)

Right TO
MAE (STD)

Mo [27] 1.96 (2.51) 5.65 (2.21) 1.61 (1.37) 5.78 (1.18)

Misu [18] 1.96 (2.51) 3.45 (6.29) 1.61 (1.37) 3.48 (4.78)

Siddhartha [19] 3.09 (2.39) 6.39 (3.01) 4.46 (3.63) 10.47 (3.20)

P.M 1.08 (0.74) 0.88 (0.70) 0.99 (0.82) 1.97 (0.93)

T A B L E  1   Walking HS and TO 
detection results. Units: samples (standard 
deviation)

Running
Left HS
MAE (STD)

Left TO
MAE (STD)

Right HS
MAE (STD)

Right TO
MAE (STD)

Mo [27] 3.09 (1.01) 8.97 (3.50) 2.95 (1.11) 10.11 (4.11)

Misu [18] 3.09 (1.01) 5.47 (1.65) 2.95 (1.11) 7.59 (4.33)

Siddhartha [19] 2.44 (1.18) 3.79 (1.09) 2.63 (1.33) 5.21 (3.44)

P.M 0.87 (1.06) 2.53 (1.97) 0.67 (0.52) 2.76 (1.44)

T A B L E  2   Running HS and TO 
detection results. Units: samples (standard 
deviation)

T A B L E  3   Walking test result on the treadmill. Units: percent 
(standard deviation)

  Right (%) Left (%)

Cadence: 70 step/min (3 km)    

Stance 66 (0.01) 66 (0.01)

Single support time 34 (0.02) 34 (0.02)

Double support time 31 (0.04) N/A

Cadence: 79 step/min (4 km)    

Stance 58 (0.01) 58 (0.01)

Single support time 43 (0.02) 43 (0.02)

Double support time 15 (0.08) N/A

Cadence: 90 step/min (5 km)    

Stance 52 (0.01) 52 (0.01)

Single support time 46 (0.02) 46 (0.02)

Double support time 6 (0.03) N/A
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5  |   CONCLUSIONS

Inertial sensors are becoming increasingly popular, owing 
to interest in the development and health benefits of wear-
able devices. Thus far, gait analysis methods have only been 
employed in specific locations, such as hospitals and labora-
tories, and have only been applied to patients. However, as 
healthcare becomes more important owing to an aging popu-
lation, westernized eating habits, and youth health problems, 
simple measurements of users’ gaits in everyday life are be-
coming increasingly necessary. Therefore, in this study, we 
developed a method to analyze the gait during common daily 
life activities using an inertial sensor.

The gait parameter detection algorithm is based on the 
triaxial acceleration and gyroscopic signals measured using 
an inertial sensor during walking. The obtained average error 
was below 0.02 seconds in walking and running.

The cadence, stance time, single‐support time, and dou-
ble‐support time can all be estimated using the proposed gait 
parameter detection algorithm. Furthermore, three linear 
motions (anterior‐posterior, medial‐lateral, and superior‐
inferior) and three rotational motions (inversion‐eversion, 
dorsi‐plantar, and adduction‐abduction) can be obtained.

Therefore, the proposed method can be utilized to man-
age and correct gait during everyday life activities, not just 
in hospital environments. Furthermore, novel gait analysis 
studies could be conducted without suffering from space 
limitations, and so this approach can be utilized for exercise 
monitoring and fall detection by analyzing daily‐life behav-
ior. However, given that additional variables need to be con-
sidered in real‐world experiments, further studies must be 
conducted to verify and improve the algorithms and make 
them robust in broader and more general types of situations.
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