• Title/Summary/Keyword: Industrial manipulator

Search Result 196, Processing Time 0.028 seconds

Integrated System of Mobile Manipulator with Speech Recognition and Deep Learning-based Object Detection (음성인식과 딥러닝 기반 객체 인식 기술이 접목된 모바일 매니퓰레이터 통합 시스템)

  • Jang, Dongyeol;Yoo, Seungryeol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.270-275
    • /
    • 2021
  • Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.

Kinematic and Structural Analysis of a 6-DOF Manipulator for Narrow-space Work (협소 공간 작업을 위한 6축 다관절 로봇의 기구학 및 구조해석)

  • Chung, Seong Youb;Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.666-672
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator for narrow workspaces in press forming processes, such as placing PEM nuts on the bottom of a chassis. In this paper, kinematic analysis was performed for the position control of the manipulator, along with structural analyses for position accuracy with different payloads. First, the Denavit-Hatenberg (DH) parameters are defined, and then the forward and backward kinematic equations are presented using the DH parameters. The kinematic model was verified by visual simulation using Coppelia Robotics' virtual robot experimentation platform (V-REP). Position accuracy analysis was performed through structural analyses of deflection due to self-weight and deflection under full payload (5 kgf) in fully opened and fully folded states. The maximum generated stress was 22.05 MPa in the link connecting axes 2 and 3, which was confirmed to be structurally safe when considering the materials of the parts.

Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability (병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화)

  • Hong, Geum-Sik;Lee, Seung-Hwan;Choe, Jin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.

Application of Nonlinear Feedback Control to an Articulated Manipulator (수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

Contact Force Estimation in 2-link Robot Manipulator Using Extended Kalman Filters (확장된 칼만필터를 이용한 2축 로봇 매니퓰레이터의 접촉힘 추정)

  • 이중욱;허건수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.123-129
    • /
    • 2001
  • Recent requirements for the fast and accurate motion in industrial robot manipulators need more advanced control tech-niques. To satisfy the requirements, importance of force control is being continuously increased and the expensive force sensor is usually installed to obtain the contact force information in practice. This information is indispensable for the force control of maintaining the desired contact force. However, the sensor cost is too high to be used in industrial applications. In this paper, it is proposed to estimated the contact force occurring between the end-effector of 2 DOF robots and environ-ment. The contact force estimation system is developed based on the static and dynamic models of 2 DOF robot manipula-tors. where the contact force is described with respect to the link torque. The Extended Kalman Filter is designed and its performance is verified in simulations.

  • PDF

A Study on the Control Characteristics of FHA by Using PLC (PLC를 이용한 ER밸브-FHA의 제어특성에 관한 연구)

  • Jang, Sung-Cheol;Hong, Soon-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.331-336
    • /
    • 2013
  • The purpose of this study is to visualize the characteristics of ER fluids as preceding step of developing 3 port ER valves. As the strength of the electric field increases, more clusters in flow are made and these clusters are thought to be the reasons of the load flow rate being increased and the outlet flow rate being decreased. The ER Valves and load and outlet flow rate check method are considered to be applied to the fluid power control system. Using the manufactured pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system for the ER Valve which occurs from industrial controller(PLC).

Dynamic Model Parameter Estimation of Hydraulic Cylinder for Robot Manipulator Control (유압구동 로보트의 제어를 위한 유압 실린더 모델 파라미터 추정)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.113-121
    • /
    • 1996
  • In the early developmental stages of robotics,hydraulics played an important role. As the power-to-weight ratio of electric motors increased, they eventually replaced hydraulic actuators in robot manipulators. Recently, however, task requirements have dictated that the manipulator payload capacity increase to accomodate greater payload, greater length, greater reaction forces, and hydraulic actusators are being studied as an effective form of robot actuation again. For efficient control of hydraulic actuators, the knowledge of its dynamic equation is essential. However, the dynamic equation of hydraulic actuators are nonlinear, and the dynamic coefficients are time varying. In this paper, an estimation algorithm of the dynamic coefficients of the hydraulic piston dynamics are formulated. Simulation results are presented to show the possibility of the parameter estimation.

  • PDF

Control of Redundant Manipulators Using Null-Space Dynamics (여유자유도 로보트 충격제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.63-70
    • /
    • 1995
  • This paper presents an impact control algorithm for reducing the potentially damaging effects by interation of redundant manipulators with their environments. In the proposed control algorithm, the redundancy is resolved at the torque level by locally minimizing joint torque, subject to the operational space dynamic formulation which maps the joint torque set into the operational forces. For a given pre-impact velocity of the manipulator, the proposed approach is on generating joint space trajectories throughout the motion near the contact which instantaneously minimize the impulsive force which is a scalar function of manipulator's configurations. The comparative evaluation of the proposed algorithm with a local torque optimization algorithm with a local torque optimization algorithm without reducing impact is performed by computer simulation. The simulation results illustrate the effectiveness of the algorithm in reducing both the effects of impact and large torque requirements.

  • PDF

Discrete-Time Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2011
  • In the real-field of control cases for robot manipulators, there always exists a modeling error, which results the model has the uncertainties in its parameters and/or structure. In many modem applications, digital computers are extensively used to implement control algorithms to control such systems. The discretization of the nonlinear dynamic equations of such systems results in a complicated discrete dynamic equations. Therefore, it will be difficult to design a discrete-time controller to give good tracking performances in the presence of certain uncertainties. In this paper, a discrete-time sliding mode control algorithm for nonlinear and time varying robot manipulators with uncertainties is presented. Sufficient conditions for guaranteeing the convergence of the discrete-time SMC system are derived. As example simulations, the proposed SMC algorithm is applied to a two-link robotic manipulator with unknown dynamics. The results of the simulation indicate that the developed control scheme is effective in manipulators and electro-mechanical system control.