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Discrete-Time Sliding Mode Control
for Robot Manipulators*
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Abstract In the real-field of control cases for robot manipulators, there always exists a
modeling error, which results the model has the uncertainties in its parameters and/or
structure. In many modern applications, digital computers are extensively used to implement
control algorithms to control such systems. The discretization of the nonlinear dynamic
equations of such systems results in a complicated discrete dynamic equations. Therefore, it
will be difficult to design a discrete-time controller to give good tracking performances in
the presence of certain uncertainties. In this paper, a discrete-time sliding mode control
algorithm for nonlinear and time varying robot manipulators with uncertainties is presented.
Sufficient conditions for guaranteeing the convergence of the discrete-time SMC system are
derived. As example simulations, the proposed SMC algorithm is applied to a two-link
robotic manipulator with unknown dynamics. The results of the simulation indicate that the
developed control scheme is effective in manipulators and electro-mechanical system control.
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1. INTRODUCTION

In recent years, methodology known as sliding
mode control (SMC) has been researched actively,
and the sliding mode control has effectively used in
the tracking control of robot manipulators by many
researchers[1,24-7911-13]. The concept of sliding
mode control has been studied in detail in Utkin
[10], where it has been used to stabilize a class of
non-linear systems. However, most of the related
works [2478] were based on the manipulator
continuous—time linear parameterization model, which
is a linear equation in terms of the unknown or

un-precisely known parameter vector. In addition,
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most continuous—time control laws require a large
amount of computation.
The

equations of such systems results in a complicated

discretization of the nonlinear dynamic

discrete dynamic equations. Therefore, it will be
difficult to design a discrete-time controller to give
good tracking performances in the presence of
certain uncertainties. Whereas, the digital control
algorithm is usually very simple and can be easily
implemented on-line using microcomputers, so it is
predominantly more effective in actual application.
But only a few literatures [1,35,6] have studied the
manipulator discrete-time model and discrete-time
control so far.

In this paper, based on the continuocus-time SMC
theory[8,10,14,15,16], when the sample time is small
enough, the manipulator dynamic model is equivalent
to a 2 discrete-time

order equation whose
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coefficients are slowly time-varying and also
possess some valuable characteristic relationships.
We define the discrete time equation as the
characteristic model of manipulators, and then a
discrete-time SMC law is presented based on the
manipulator characteristic model. Also, sufficient
conditions for guaranteeing the convergence of the
discrete-time SMC system are derived. With this
control scheme, the problems resulting from the
paramefric and nonparametric uncertainty can be
overcome effectively. As example simulations, the
proposed SMC algorithm is applied to a two-link
robotic manipulators with unknown dynamics. The
results of the simulation indicate that the developed
confrol scheme is effective in manipulators and
electro-mechanical system control. This paper is
organized as follows: In Section 2, the dynamics
formulation and the manipulator characteristic model
is introduced. In Section 3 and 4, a discrete-time
SMC law is presented. A simulation example is
given in Section 5. Finally, some conclusions are
made in Section 6.

2. MANIPULATOR DYNAMIC MODEL AND
CHARACTERISTIC MODEL

Consider a robotic manipulator with n degrees of
freedom. The continuous Lagrangian dynamic model
[24,7] is given by

M(9)§+V(q.9)4+G(g) =7 (1)

Where 7€R” is the vector of joint torques

supplied by the actuators. 4.9-4€R” are the

position, velocity and acceleration of joint
T nxn

coordinates, with 9=[9%+9.] . M(g)eR™ g

a manipulator mass matrix. It is symmetric, positive

definite and there exist two constant positive

scalars M and M such  that

M, SIM|<Me The V(g.4)d<R"

represents torques arising from centrifugal and

vector

Coriolis forces. The vector G(9)€R"  represents
torques due to gravity. If the designed 7(t4.9) is

continuous in %9 and 4 then the solution (4-9) of
(1) will be continuously differentiable.

In joint space, the control problem for robot
manipulators is to synthesize a control law for the

torques such that the joint output, q(H)e R", traces

the desired trajectory, qd(t)ERn, with a certain
precision defined by

q=[341", lal=la-a.l<n, f|=ki-al=r,

7>0,7,>0 2)

It is assumed that 94(»9:(®) and 4:® are well
defined and bounded for all operational time £.

When the sample time 7o is small enough, at

instant £=KT; 4§ and 4 can be approximated by

L a0-gk) | alk+D-2a(0)+q(k-D)
T and G

respectively. Using the above relationships the
discrete-time representation of (1) becomes[4]

%M (9(k))-q(k+1) + £i(K)g(k) + £, (k)q(k —1) + G(q(k)) = (k)

3
Where

2 1 .
Silk)= —T_fM (q(k))+EV (q(k),4(k)) @
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Sr(k) =

1 1 .
= M(q(k))—T—SV(q(k)aCI(k))

s

Pre-multiplying (3) by LM (@(k) results in
q(k+1) =T (k)- (- £,(k)q(k) - £,(k)q(k —1) - G(q(k)) + 7(k))

)]
Where

T(k)=TM"(q(k)) ®)

Generally, parameters of robot manipulators are
not known exactly, and are time varying.

Let M(‘I(k)), 0 and /() as the nominal
value of M(g(k) fF) andfs®)  respectively.

Then, we can write

M (q(k)) = M(q(k)) - M(q(k)) %)
fik) = £, - £k

Define

e(b)=q(k)=q,(k) and ok)=e(k)+Ae(k-1) (g)

with A is chosen to satisfyc(k)=0
Lemma 1:

(a) There exist positive scalar function 7(#)eR
such that

DR)Eo 1(@() (4,8 +1)+ (1= A)je(k) + Aeth~D)

+T(0) LA ()gk) + Fy()gk-D + Gl < Ty (9
with
(k) =1+ o (b)|+ |l (0 (10)

(b) There exist positive scalar function

Bk)eR gych that
T(k)- [% M(q(k))- (g, (k+1)+ (1~ Ade(k) + Ae(k -1))]

+L(k)- [/ (R)q(k)+ f()g(k -1+ (g -T(k)g(k)T < B(k)
(11)

Proof: It is well known that M is positive definite
bounded matrix function of 9(k),
V(q(k),q(k))is a function at most quadratic in 4(k),
thus A®) LK) and GK) are bounded. Noting
that 9. and 9«(F)are bounded, we have that 9(k)
leNang el

we see that le®] s

and a

and 9 are bounded on

respectively. From (8),
bounded on ”O'(k)". Therefore, it is clear that there
exist bounded nonlinear functions fi(k:n(k)€ R ang
G(k)eR" such that

1"(’6)’[%1\71 (9(k))- (g, (kb + D+ (1= Ae(k) + Ae(k —1))]

K

+L(k)Lf ()g(R) + f,(k)g(k -1+ G(g(N =8 + 1 |o|+ 1 o]
(12)

n(k)
functions %6 and (k). Then, clearly (9)

holds. This implies that there exist bounded
functions such that (b) holds.

Now, let be the maximum value of

3. DISCRETE-TIME COMPUTED TORQUE
CONTROL

In @), if M@®k), LK) and/;®) are completely
known, then A=Ak, £0)=F® and Gak)=Glq@h)
The desired torque can be computed at every
instant by using the computed torque method (also
called inverse dynamics) as follows
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7(k)=u, (k) (13)

with % (B) a5

u,q(k)=T—lzﬁ(q(k))-(qd(k+1)+(1—A)e(k)+Ae(k—1))+
Sy + (kg —1)+ G(q(k)) (14)

Then, from (3) and (12) we get

1
T2

5

M(q(k))-q(k+ 1)+ fi(k)q(k) + f,(k)q(k — D)+ G(q(k))

= L W(@U)-(qu(k + 1)+ (- Ade(k)+ Ae(k—1)) +

2
s

Fik)gk)+ f,(k)q(k -1+ G(q(k))

:>-;—2M(q(k))'[q(k+1)—qd(k+1)+(1—1\)e(k)+Ae(k—l)]= 0

s

= % M (q(B))-(e(k+1)+(1-Ade(k)+ Ae(k-1))=0

8

(15)

Therefore, it can be seen that A =diag(A,A,,+,A,)

and A can be chosen to satisfy (8).

4. DISCRETE-TIME SLIDING MODE CONTROL

In this section, we propose a discrete-time sliding
mode control law to compute the control input
torque for the uncertain system (3) as follows

(k) = u,, (k) +u,, (k) (16)

where % is nominal torque vector shown as
(14) and

k) .
A 2o T ol

N >0, £>0

~g(om,, 28,
&

U, (k)=

otherwise

(17

with #(k)defined by (10). In (14), we see that
(k) is the sliding mode torque vector with (k) as
the discrete-time sliding (hyper) surface and gain
Mon is defined by Lemma 1 as m 27(K), Then, we
have the following resuilt.

Theorem 1 Consider the system (3) with the
control law (13). The closed-loop system is globally

stable in the sense that the tracking error (%) is
globally bounded by

ool <
Proof: Choose a Lyapunov function:

1 .7
V(k)=50'(k) o(k) 19

From (8) and (5) we get

o(k+1) = g(k +1)— g, (k +1)+ Ae(k)

=T(k)-[-/(K)q(k) - f,(k)q(k 1) -

G(g(E) + (k)] - g, (k +1) + Ae(k) (20)

By substituting (12) ,(13) and (14) into (20) yields

o(k+1)=-T(k)-[/i(k)g(k)+ fo(k)q(k - 1)+ G(g(k))]
+I(k) -[TLZM (g(k)) (g, (ke + 1)+ (1= Ade(k) + Ae(k —1))]

s

+T(k)-(f(k)g (k) + 7 (k)q(k -1) + G(g(k))
+(k)-u, (k)—q,(k +1)+ Ae(k)

- 48 -



=Adk)+(1-Ne(k)+Ae(k—1)
+f(k)-[% MRY)- (g, (k1) +(1~Ne(R)+ Ae(k-)]
+I7(k)'[)~;(k)q(k) + Rk 1)+ GgRI+T(R)-u,, (k)
=e(k)+Adk-1)
+T(k)~[% MgR))-(g k+1)+(1—-NeR) + etk -1)]

+IVR)- [0+ £, (kg - 1)+ KW+ 1) -, (k)
=o(k)+rtk)-[%wk»-(qd<k+1)+<1—A)e(k)+Ae<k—1»]
+IR)-[fi(R)gR)+ (k-1 + L)+ T k) -, ()

Now we let

Ao(k+)=oc(k+D-o(k) (22)

Then from (21) and (22) we get

Ac(k+1)=
I'(k) -[T%M(q(k» (g, (k+ 1)+ (1= Ae(k) + Ae(k ~1))]
+ r(k)ff,(k)q(k) + f,()q(k -1+ G (q(h)] + T(k) - u,, (k)
=I'(k) b, (k)+T(k)- hy(k)+T(k)-u,, (k)

(23)
where

hy (k) = %M (q(k))- (g4 (k+1)+(A—N)e(k) + Ae(k~1))

s

h, (k)= f.(k)q(k) + f,(k)q(k-1) +G(q(k)
Squaring both side of (22) gives

o(k+1)* = o (k) +20(k)Ac(k +1)+ Ac(k +1)*
- o(k+1)’ ~o (k) = 20()Ac(k+1) + Ac(k +1)

—>20(k)Ac(k+1)+Ac(k+1)
=20(k)- C(k)h, (k) + hf (k) +u,, (k)]+
T (kY [y (k) + by (k) +u,,, (k)P (24)

When , let>2  from (17) and Lemma 1, can be
o(k)-u,, (k) =—g(k)m,, |o®)|
(25)
20 (KA (k+1)+ Aok +1)?
= 20 (k) TRy (k) -+ b, (K) + 20, ()] +
T (kYL () + by (k) + 1y (OOT
< 25(k)B(k)+ B(kY: <O 26)

Vik+D)<V(k) for all 9<B(k)<2 This

implies that ()is bounded by ||0(k)||58.

Thus ,

5. ALLEVIATION OF THE COMPUTATIONAL
BURDEN

In the control law of (16), the computed torque

term  “(%) contains many trigonometric functions.
In this section, we exclude these trigonometric

functions. Instead of the computed torque vector
u,(k) in (16), we replace “«*) with another sliding

mode control torque vector as:

—¢(k)n,_,,,"—‘;—§i—;“, if o>
37, >0, €>0

g, T8,
£

lhey () =

otherwise @70

The discrete sliding mode control law can now be
designed

i, (k) =1, k) +u,(k)

4, +nm)“—;‘—§’,§—;“, if Jo|>e

= 37, >0, 1,>0, £€>0

o(k)

(k). + Tlsm)—g—’ otherwise (28)
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The stability proof (28) can be obtained as the
same way in Theorem 1.

6. SIMULATION RESULTS

A simple two-link robot manipulator shown in
Figure 1 has been simulated, controlled by the
discrete sliding mode control of (28), which is
developed in this paper. The manipulator was
modeled as a set of nonlinear coupled differential
equations as described in [7]

7, =m,)l} G, +G,) + mlLc,(2G, +§,)+(m + m)IL§ "~
mLl,s,4; ~2m,L1,s5,4,4, + mlbgs,, +(m +m,)igs,
7, =myl2 (G, + G,) + mybl,c,G, + mlLs,g +m)lgs,,
(29)
where € = cos(ql)’ 8, =sin(g, +q2), etc.

The desired trajectories are chosen as

qn =1+02sin(nt), q,, =1-0.2cos(t)
for t€[0,12]

Parameters used in the simulation were
L=l,=1m,m =m, =1kg
While the manipulator was being operated, " and

™M, were changed from 1k8 to 1.5k& and from

1kg to 1.25kg regpectively at f=63ec  In the
simulation, the sample time Ts = 0.1ms .
The plant initial states were set as

90 (k)=1,4,,(k)=0.8,9,,(k-1) = 0.27,4,,(k-1)=0

We applied the control algorithm of (28) to the
system (29) with the controller parameters were

chosen to be

Mg + Mo =55, €=0.03

The simulation results are shown in Figure 2: (a)
position errors; (b) control torques for each link of
the manipulator; (c) link trajectories. It can be seen
in Figure 2(a) and (c) that the tracking errors were
increasing due to the mass change of at t=6sec.
However, the system is stable with the desired
bounded tracking errors for the given parameter
changes.

7. CONCLUSIONS

In this paper, discrete sliding mode control
algorithms have been proposed for robust trajectory
following control of robot manipulators. The proposed
algorithms eliminate the requirement for measurement
of joint acceleration, or for calculation of a regressor.
Therefore the computation load required is roughly
the same as that of a PID controller. The
implementation of the control scheme is very simple.
Only the measurements of the position tracking
errors and the velocity tracking errors are required.
Computer simulation results shown good properties of
the proposed algorithms under large manipulator
parameter uncertainties.

ma

<Figure 1> A simple two-rigid-link robot manipulator
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