• Title/Summary/Keyword: Industrial energy demand

Search Result 305, Processing Time 0.023 seconds

Optimal Electric Energy Subscription Policy for Multiple Plants with Uncertain Demand

  • Nilrangsee, Puvarin;Bohez, Erik L.J.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.106-118
    • /
    • 2007
  • This paper present a new optimization model to generate aggregate production planning by considering electric cost. The new Time Of Switching (TOS) electric type is introduced by switching over Time Of Day (TOD) and Time Of Use (TOU) electric types to minimize the electric cost. The fuzzy demand and Dynamic inventory tracking with multiple plant capacity are modeled to cover the uncertain demand of customer. The constraint for minimum hour limitation of plant running per one start up event is introduced to minimize plants idle time. Furthermore; the Optimal Weight Moving Average Factor for customer demand forecasting is introduced by monthly factors to reduce forecasting error. Application is illustrated for multiple cement mill plants. The mathematical model was formulated in spreadsheet format. Then the spreadsheet-solver technique was used as a tool to solve the model. A simulation running on part of the system in a test for six months shows the optimal solution could save 60% of the actual cost.

The Effects of Gas and Electric Demand according to Construction of Industrial CHP in the Korea (산업체 열병합발전이 가스 및 전력수급에 미치는 영향 산정)

  • Kim, Yong-Ha;Woo, Sung-Min;Back, Bum-Min;Yeon, Jun-Hee
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.22-30
    • /
    • 2009
  • Recently, energy efficiency is important in Korea. This paper reviews shadow amount to perform economic analysis for CHP that converts existing equipment in industrial area. It is verified that shadow amount analyze effects of gas and electric demand.

The Effects of Spot Pricing for the Change of the Electric Power Demand Based the Demand Elasticity (수요 탄력성에 따른 전력수요의 변화가 현물가격에 미치는 영향)

  • 김문영;백영식;송경빈
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.142-148
    • /
    • 2002
  • The variations of real time electric price in competitive electricity markets have influence on electric power demands of the consumers. Residential, commercial, and industrial consumers with different characteristics cause the different price elasticity of the demand due to changing the pattern of consumption. Therefore, this paper analyze the effects of spot pricing for the change of the electric power demand based on the demand elasticity of each loads in competitive electricity market.

A Study on Demand for Renewable Energy Workforce and HRD Policy Strategy (신.재생에너지 중장기 인력 수요 전망 및 인력양성 방향 연구)

  • Lee, You-Ah;Lee, Dong-Jun;Heo, Eun-Nyeong;Kim, Min-Ji;Choi, Hyuk-Joon
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.4
    • /
    • pp.736-760
    • /
    • 2011
  • The importance of new renewable energy is emphasized not only new growth engine but also the key solution for the exhaustion problem of fossil energy and environment problem. For the steady growth of new renewable energy industry, securing related labor force is an essential factor. In this study, the status on labor force of new renewable energy industry was identified and forecasted the labor force demand of new renewable energy in 2015 by reflecting the industrial growth outlook on the new renewable energy. For the quantitative analysis methodology, the stock approach of Bureau of Labor Statistics (BLS) of the United States was applied. Also by performing survey on the experts, the opinions of experts on supply and demand of new renewable energy labor force or worker training programs have been gathered. As a result of study, it has been analyzed that nearly 20% annual growth rate will be shown as the labor force demand in the field of new renewable energy industry increases from 14,100 people in 2010 to 33,200 people in 2015. In the survey on experts, we could find that a plan for supplying labor force must be prepared promptly in order to accomplish new renewable energy supply objectives and industrial growth objectives by our country in the future as the supply of new renewable energy labor force is currently insufficient. Also, it has been analyzed that the effort for deciding the proper new renewable energy labor force training program standard will be necessary. This study result could be used as a material of labor force training plan for the steady growth of new renewable energy industry in the future.

  • PDF

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Experimental Study on Optimal Operation Strategies for Energy Saving in Building Central Cooling System (건물 중앙냉방시스템의 에너지절감을 위한 최적운전 방안에 관한 실험적 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4610-4615
    • /
    • 2013
  • In this study, optimal operation strategies to save the electric energy and power price in the building central cooling system is researched by experiments. The optimal strategies of demand response control and outdoor temperature reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested optimal control method shows better responses in the power price and energy consumption in comparison with the conventional one and saves energy consumption by 9.5% and electronic price by 15.7%, respectively.

EV Energy Convergence Plan for Reshaping the European Automobile Industry According to the Green Deal Policy (그린딜 정책에 따른 유럽자동차 산업재편의 EV 에너지 융합방안)

  • Seo, Dae-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.40-48
    • /
    • 2021
  • The paper dealt with the fact that the green deal took place when the demand for electrical energy surged. However, the procurement of electric vehicles and much of the electric energy of the future still depends on fossil fuels. Accordingly, the importance of the IT industry is highlighted, and the demand for hydrogen-electric vehicles and related industries increases. The method of this study investigated the relevance of EV charging as a future next-generation power source rather than the electric energy demand of the IT industry. This study derives the correlation between industrial electricity and household energy PPP according to economic growth through empirical regression analysis. As the result, it was found that the amount of change, including electric and next-generation electric vehicles, was significant for on thirds of the countries in the change in purchasing power compared to GDP. This affects overall purchasing power as twelve out of thirty two countries with EV demand (Italy, Canada, Switzerland, Poland, Slovenia, Germany, Slovakia, Finland, Sweden, Czech Republic, Estonia, Denmark) are more sensitive to electric energy. This is related to the charging of EVs or hydrogen as the next-generation power of the future rather than the electric energy demand of the IT industry. By preventing waste of unused electricity of IT-electric energy sources and charging-preserving hydrogen electricity, it seems indispensable to prepare for the national IT power conservation buffer facility for supply and demand in future growth.

An Analysis on the Advancement of Korean Energy Technology Innovation System (한국 에너지기술혁신체제 분석 및 개선방안 연구)

  • Park, Jung-Gu;Yoon, Seong-Pil;Park, Sung-Hwan
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.312-325
    • /
    • 2013
  • This article analyzes the lock-in factors and their advancement direction of Korean energy innovation system(EIS), using case-study methodology. As the lock-in factors, which have been structural and complicated ones in the developing process of Korean EIS, are postulated government policies, market, industrial network, and demand condition. The lock-in phenomena result from connecting and conflicting incompletely among government policies, competing and controlling oligopolistically in market, constructing insufficiently in intra-industrial value-chain, and lowering in demand efficiency. To cope with these lock-in structure, connection among government policies, activation in market competition, coordination of industrial structure for added values, and uprading in energy efficiency are needed.

DSM Program of Domestic Diffusion for Demand Controller (최대전력관리장치 보급확대를 위한 수요관리 프로그램 개발)

  • Lee, Hak-Ju;Lee, Han-Byul;Park, Jae-Duck;Kum, Byung-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.345-347
    • /
    • 2005
  • The electric demands increase, financial need for new power plant constructions and environmental problem have led to search for more efficient energy production and load management. To minimize the construction of power plants and reduce total power consumption include installation of demand controller to industrial applications. Accordingly to maximize the load control by the diffusion of demand controller, govermental economic supports as well as the analysis of energy saving effects. This paper presents the cost-effectiveness analysis for DSM program evaluation and case study to analyze demand controller DSM program.

  • PDF

Optimal Energy Consumption Scheduling in Smart-Grid Considering Storage Appliance : A Game-Theoretic Approach (스마트 그리드에 있어서 저장 장치를 고려한 최적 에너지 소비 스케줄링 : 게임 이론적 접근)

  • Yeo, Sangmin;Lee, Deok-Joo;Kim, Taegu;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.414-424
    • /
    • 2015
  • In this research, we consider a smart grid network of electricity with multiple consumers connected to a monopolistic provider. Each consumer can be informed the real time price changes through the smart meter and updates his consumption schedule to minimize the energy consumption expenditures by which the required power demand should be satisfied under the given real time pricing scheme. This real-time decision making problem has been recently studied through game-theoretic approach. The present paper contributes to the existing literature by incorporating storage appliance into the set of available household appliances which has somewhat distinctive functions compared to other types of appliances and would be regarded to play a significant role in energy consumption scheduling for the future smart grid. We propose a game-theoretic algorithm which could draw the optimal energy consumption scheduling for each household appliances including storage. Results on simulation data showed that the storage contributed to increase the efficiency of energy consumption pattern in the viewpoint of not only individual consumer but also whole system.