DOI QR코드

DOI QR Code

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex

산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구

  • Oh, Kwang Min (Department of New Energy Engineering, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Kim, Lae Hyun (Department of Chemical & Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science & Technology)
  • 오광민 (서울과학기술대학교 에너지환경대학원 신에너지공학과) ;
  • 김래현 (서울과학기술대학교 에너지바이오대학 화공생명공학과)
  • Received : 2019.07.17
  • Accepted : 2019.08.08
  • Published : 2019.09.30

Abstract

The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

본 연구는 산업단지 내 Gas Combined Cycle CHP와 연계 가능한 신재생에너지원을 조합하여 최적의 설비용량을 산정하고자 하였다. 특히 2013~2016년도 에너지사용계획 협의 대상 산업단지 중 집단에너지 공급대상 지역지정 연료사용량 요건은 연간 3.8만 TOE로 미달되지만, 열밀도가 $92.6Gcal/km^2{\cdot}h$로 높은 세종첨단일반산업단지를 연구 대상으로 하였다. 그리고 신재생에너지 Hybrid System 경제성 분석 프로그램인 HOMER Pro를 이용하여 연료전지와 태양광발전을 연계한 FC-PV Hybrid CHP System의 최적화 운영 모델에 대해 분석하였다. 또 CHP의 주 공급 에너지원인 열에너지에 있어, 열수요량 뿐만 아니라 우점 업종에 대한 열수요 패턴을 분석하여 연구의 신뢰도를 높이고자 하였으며, 경제성 분석을 추가하여 상대적 편익을 비교하고자 하였다. 연구 결과, 신규 조성 중인 세종첨단일반산업단지의 전체 간접열 수요는 연간 378,282 Gcal이며, 이중 제지업종이 연간 293,754 Gcal인 약 77.7%를 우점하고 있었다. 산업단지 전체 간접열 수요에 대해 단일 Combined Cycle CHP의 최적 설비용량은 30,000 kW로, 이때 열생산은 CHP가 275,707 Gcal, 72.8 %를 분담하고, 첨두부하보일러 PLB가 103,240 Gcal, 27.2 %를 분담하는 것으로 분석되었다. 그리고 CHP와 연료전지, 태양광 조합에서는 최적 설비용량이 각 30,000 kW, 5,000 kW, 1,980 kW이며, 이때 열생산은 Combined Cycle CHP가 275,940 Gcal, 72.8%, 연료전지가 12,390 Gcal, 3.3%, PLB가 90,620 Gcal, 23.9%를 분담하였다. 여기서 CHP 용량이 감소하지 않은 것은, CHP 용량 감소에 따른 부족한 열 생산량에 대해 PLB의 과다한 운전이 요구되는 경제적이지 못한 대안이 도출되었기 때문이었다. 한편 우점 업종인 제지업종의 간접열 수요에 대해서는 Combined Cycle CHP, 연료전지, 태양광 조합의 최적 설비용량은 25,000 kW, 5,000 kW, 2,000 kW로, 이때 열생산은 CHP 225,053 Gcal, 76.5%, 연료전지 11,215 Gcal, 3.8%, PLB가 58,012 Gcal, 19.7%를 분담하는 것으로 분석되었다. 그러나, 현행 전력시장 및 가스시장에서의 경제성 분석결과는 모두 투자비 회수가 불가능한 것으로 확인 되었다. 다만, 우점 업종인 제지 업종만을 대상으로 CHP와 연료전지, 태양광을 조합한 CHP Hybrid System이 단일 CHP System에 대해 연간 약 93억원의 경영여건을 개선시킬 수 있음을 확인하였다.

Keywords

References

  1. Joint ministries, 2016, Special measures for fine dust management, pp. 4-5.
  2. Joint ministries, 2018, Amendment to the Basic Roadmap to Achieve National Gas Reduction Goals by 2030, pp. 8-9.
  3. Ministry of Trade, Industry and Energy, 2017, The 8th Basic Plan for Long-Term Electricity Supply and Demand(2015-2029), pp. 35-37.
  4. Article 2 (1) of the Enforcement Decree of the Integrated Energy Supply Act.
  5. Ministry of Trade, Industry and Energy, 2014, The 4th Master Plan for Integrated Energy Supply, pp. 4-5.
  6. Korea Energy Agency, 2017, 2017 Korea Energy Agency Handbook, pp. 22.
  7. Sejong Industrial Complex, 2015, Negotiation on Energy Use Plan of Sejong industry complex - Energy demand forecast, pp. 92-93.
  8. Eco & Partners, 2016, 2013-2015 greenhouse gas statement facility uptime survey results.
  9. Korea Electric Power Exchange, 2015, Estimation of Appropriate Capacity of Demand Response Resources and System Improvement for Efficient Power Market Operation, pp. 146-147.
  10. Kim Y., H., 2007, Design of Heat Trading Mechanism between Collective Energy Providers", Incheon University, pp. 29-30.
  11. Act on The Promotion of the Development, Use and Diffusion of New and Renewable Energy.
  12. Hyun G., S., 2008, CHP Optimal Capacity Estimation Program Development, KDHEC, pp. 200-202.
  13. HOMER Pro 3.13.3, http://www.homerenergy.com
  14. Lee, S. J., 2017, Optima Process Model of CHP Using New & Renewable Energy Hybrid System in CES, Master's thesis of Seoul National University of Science and Technology, Seoul, pp. 24.
  15. W. O. Amor, H. B. Amar, Moez Ghariani, 2015, Energetic and Cost Analysis of Two Conversion Systems Connected To The Grid By Using HOMER Pro, International Journal of Renewable Research, Vol.5, No.3, 926-935.
  16. S. Bahramara, M. Parsa Moghaddam and M.R. Haghifam, 2016, Optimal planning of hybrid renewable energy systems using HOMER: A review, Renewable and Sustainable Energy Reviews, Volume 62, pp. 609-620. https://doi.org/10.1016/j.rser.2016.05.039
  17. Article 4 (1) of the Enforcement Decree of the Electric Utility Act.
  18. Korea District Heating Corporation, 2009, Heat Balance Diagram of CES in Southeast Distribution Complex, pp. 9.
  19. Attached Table 1 of the Enforcement Decree of the Energy Act.
  20. Korea Electric Power Exchange, 2018, Rules on Operation of Electricity Market, pp. 11-12.
  21. Korea Electric Power Exchange, 2015, The Regulations on the Issuance of Supply Certificates and Operation of the Trading Market - Attachment 1, pp.27-28, 35.
  22. Korea Gas Corporation., http://www.kogas.or.kr