• Title/Summary/Keyword: Industrial control system

Search Result 4,167, Processing Time 0.039 seconds

DVR Control System Design applied to 22.9kV Distribution System (22.9kV 배전선로 적용을 위한 DVR 제어시스템 설계)

  • Kim H. J.;Chung Y. H.;Kwon G. H.;Park T. B.;Jeon Y. S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.30-32
    • /
    • 2004
  • This paper describes control system design for the DH(dynamic voltage restorer) consisted of a diode rectifier and series inverter applied to 22.9kV distribution system. The DVR control system is consisted of the main two parts. One is a voltage event detector using a neural network and the other is deadbeat controller for the output voltage and current control of the DVR. A simulation model was developed for analyzing performance of the controller and the whole system. The results confirm that the DVR can restore load voltage under the fault of the distribution system.

  • PDF

Effects of Damping and Elastic Nature on the Control Performance of a Safety Budget-Industrial Accidents Model (산재예방예산-산재율 모델의 감쇠 및 탄성 특성이 제어성능에 미치는 영향)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • In this study, the effect of damping and elastic nature on the control performance of a safety budget-industrial accident rate model in Korea is examined first. The effectiveness of such dynamic model in establishing safety policies is shown with a simple proportional-integral(PI) feedback control mechanism. Control performance of the safety system model is explained in view of maximizing the effect of IAPF and minimizing the absolute amount of IAFP. Control performance is then evaluated and proved to be effective to prevent and reduce the industrial accidents. Implications in feedback control of a safety system model suggested to optimization of safety policies are also explored. Without proper restructuring of the safety system, it would not be possible to hit the target industrial accident rate. Even if the control objective is met, the amount of industrial accident prevention fund required to reduce the industrial accident rate from the current level to the target level would be far beyond the social consensus.

development plan of nuclear cyber security system (원전 사이버보안 체계 개발 방안에 대한 연구)

  • Han, Kyung-Soo;Lee, Gang-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.471-478
    • /
    • 2013
  • Industrial control system was designed mainly in the form of analog in early days. However, necessity of digital system engineering is increasing recently because systems become complicated. Consequently, stability of digital systems is improved so most industrial control systems are designed with digital. Because Using digital design of Industrial control system is expanded, various threatening possibilities such as penetration or destruction of systems are increasing enormously. Domestic and overseas researchers accordingly make a multilateral effort into risk analysis and preparing countermeasures. In this paper, this report chooses common security requirement in industrial control system and nuclear control system through relevant guidelines analysis. In addition, this report suggests the development plan of nuclear cyber security system which will be an essential ingredient of planning approvals.

Control of Industrial Safety Based on Dynamic Characteristics of a Safety Budget-Industrial Accident Rate Model in Republic of Korea

  • Choi, Gi Heung;Loh, Byoung Gook
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.189-197
    • /
    • 2017
  • Background: Despite the recent efforts to prevent industrial accidents in the Republic of Korea, the industrial accident rate has not improved much. Industrial safety policies and safety management are also known to be inefficient. This study focused on dynamic characteristics of industrial safety systems and their effects on safety performance in the Republic of Korea. Such dynamic characteristics are particularly important for restructuring of the industrial safety system. Methods: The effects of damping and elastic characteristics of the industrial safety system model on safety performance were examined and feedback control performance was explained in view of cost and benefit. The implications on safety policies of restructuring the industrial safety system were also explored. Results: A strong correlation between the safety budget and the industrial accident rate enabled modeling of an industrial safety system with these variables as the input and the output, respectively. A more effective and efficient industrial safety system could be realized by having weaker elastic characteristics and stronger damping characteristics in it. A substantial decrease in total social cost is expected as the industrial safety system is restructured accordingly. Conclusion: A simple feedback control with proportional-integral action is effective in prevention of industrial accidents. Securing a lower level of elastic industrial accident-driving energy appears to have dominant effects on the control performance compared with the damping effort to dissipate such energy. More attention needs to be directed towards physical and social feedbacks that have prolonged cumulative effects. Suggestions for further improvement of the safety system including physical and social feedbacks are also made.

Development of the Dynamometer Control System for Medium Speed Diesel Engines

  • Choi, Sang-Gu;Ryu, Sang-Hun;Kim, Jeom-Goo;Park, Ho-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.243-247
    • /
    • 2004
  • The dynamometers which had made in a long time ago could not control the input/output quantity of water minutely and was sensitive to a noise since it was controlled by an analog control method. Therefore, a fully digital controlled system was urgently required to be robust against various noises. In this paper, the new system which can control the amount of circulated water in dynamometer was developed. This system is consisted of an industrial digital type controller and a servo motor. The industrial PLC was used as a main controller for the developed system, and the actuator and servo motor were used to control the inlet and outlet valve independently. The torque signal of load cell was fed back to the main controller to regulate the diesel engines load. Generally, an input/output valve position of the old dynamometer was fixed with a proper situation for an engine output test and the torque was changed according to the time interval. However, the torque value for the dynamometer could not be constantly kept because of the variation of the input water flow and fluid characteristic. Therefore, the automatic control of an inlet and outlet valve should be performed to keep the constant torque. So, the PID control method was applied to solve this problem. Also, the development of a web-based remote control system was described in this paper. This software will give us the convenience of operation, the more efficient operations, and the reduced operator workload for operation of the dynamometer. The application results of the system have been verified at actual diesel engine field.

  • PDF

A Comparison of Operating Characteristics for Industrial Water Cooler with Variation of Control Methods (제어방식에 따른 산업용 수냉각기의 운전 특성 비교)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a comparison of operating characteristics for industrial water cooler with variation control methods. The performance analysis regarding the characteristics of condensation capacity, evaporation capacity, compressor load, COP of an on-off type cooler, a hot gas-bypass control type cooler and an inverter control type cooler with respect to the system load is reviewed, respectively. The primary results are as following: the variation of required compressor load of an on-off type cooler with respect to load is 5%, that of hot gas-bypass type is 18% and 66% for an inverter control type cooler. As the result shows, an inverter control type yields relatively huge difference of required compressor load compared to other types of control system. In terms of partial load, COP of an inverter control type cooler presents the highest value, and is considered as the optimized type for the used of the system involving frequent partial load.

The Development of Computer Integrated Safety Diagnosis System for Press Process (PRESS 공정의 컴퓨터 통합 안전 진단시스템 구축에 관한 연구)

  • 강경식;나승훈;김태호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.175-182
    • /
    • 1995
  • Industrial safety management program can be divided three part that is education, technology, and management. The effectiveness of a industrial safety management program depends on the ability to manage hardware which is technology and software, education and management, In this research, it will be described that how to design and develop Computer Integrated Safety System and Computer Based Training System for Press operations which is how to integrated industrial safety program wi th production planning and control in order to control efficiently using personnel computer system.

  • PDF

Force control of robot manipulator using fuzzy concept

  • Sim, Kwee-Bo;Xu, Jian-Xin;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.907-912
    • /
    • 1990
  • An approach to robot force control, which allows force manipulations to be realized without overshot and overdamping while in the presence of unknown environment, is given in this paper. The main idea is to use dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resolved acceleration control method, dynamic compensation and PID control based on known robot dynamics, kinematics and estimated environment compliance is introduced. To avoid overshoot the whole control system is constructed overdamped. In the second stage, the unknown environment stiffness is estimated by using fuzzy reasoning, where the fuzzy estimation rules are obtained priori as the expression of the relationship between environment stiffness and system response. Based on simulation result, comparisons between cases with or without fuzzy identifications are given, which illustrate the improvement achieved.

  • PDF

Development of Industrial Load Control Algorithm for Factory Energy Management System (F-EMS) under Real Time Pricing Environment (실시간요금제하에서 산업용 수용가의 부하제어알고리즘 개발)

  • Jeon, Jeong-Pyo;Jang, Sung-Il;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1627-1636
    • /
    • 2014
  • In real-time electricity price environment, the energy management system can provide the significant advantage to the residential, commercial and industrial customers since it can reduce the electricity charge by controlling the load operation effectively in response to time-varying price. However, the earlier studies for load management mainly focus on the residential and commercial customers except for the industrial customers because most of load operations in industrial sector are intimately related with production schedule. So, it is possible that the inappropriate control of loads in industrial sector causes huge economic loss. In this paper, therefore, we propose load control algorithm for factory energy management system(F-EMS) to achieve not only minimizing the electricity charges but also maintaining production efficiency by considering characteristics of load operation and production schedule. Considering characteristics of load operation and production schedule, the proposed load control algorithm can reflect the various characteristics of specific industrial customer and control their loads within the range that the production efficiency is maintained. Simulation results show that the proposed load control algorithm for F-EMS leads to significant reduction in the electricity charges and peak power in industrial sector.

A security study for Control Network: Security Threat Using Control Protocol (제어 네트워크의 프로토콜을 이용한 보안 위협 연구)

  • Choi, DongJun;Lee, JaeWoo
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • Unlike a general IT environment, an industrial control system is an environment where stability and continuity are more important than security. In the event of a security accident in the industrial control system, physical motion can be controlled, so physical damage can occur and physical damage can even result in personal injury. Cyber attacks on industrial control systems are not simply cyber damage, but terrorism. However, the security of industrial control systems has not been strengthened yet, and many vulnerabilities are actually occurring. This paper shows that the PLC can be remotely controlled by analyzing the connection process and packets for the PLC protocol used in the industrial control system and bypassing the security mechanism existing in the protocol. Through this, we intend to raise the security awareness of the industrial control system.