Force control of robot manipulator using fuzzy concept

  • Published : 1990.10.01

Abstract

An approach to robot force control, which allows force manipulations to be realized without overshot and overdamping while in the presence of unknown environment, is given in this paper. The main idea is to use dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resolved acceleration control method, dynamic compensation and PID control based on known robot dynamics, kinematics and estimated environment compliance is introduced. To avoid overshoot the whole control system is constructed overdamped. In the second stage, the unknown environment stiffness is estimated by using fuzzy reasoning, where the fuzzy estimation rules are obtained priori as the expression of the relationship between environment stiffness and system response. Based on simulation result, comparisons between cases with or without fuzzy identifications are given, which illustrate the improvement achieved.

Keywords