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ABSTRACT

An approach to robot force control, which al-
lows force manipulations to be realized without
overshoot and overdamping while in the pres-
ence of unknown environment, is given in this
paper.

The main idea is to use dynamic compensa-
tion for known robot parts and fuzzy compen-
sation for unknown environment so as to im-
prove system performance. The fuzzy compen-
sation is implemented by using rule based
fuzzy approach to identify unknown environ-
ment. The establishment of proposed control
system consists of following two stages. First,
similar to the resolved acceleration control
method, dynamic compensation and PID control
based on known robot dynamics, kinematics
and estimated environment compliance is in-
troduced. To avoid overshoot the whole control
system is constructed overdamped. In the sec-
ond stage, the unknown environment stiffness
is estimated by using fuzzy reasoning, where
the fuzzy estimation rules are obtained priori
as the expression of the relationship between
environment stiffness and system response.

Based on simulation result, comparisons be-
tween cases with or without fuzzy identifica-
tions are given, which illustrate the improve-
ment achieved.

1L.INTRODUCTION

Robotic manipulation may be divided in two
ways: moving freely in the work space and dy-
namically interacting with the environment
under constraints. Conventional PID control
with dynamic compensation is sufficient when
motions of robots are unconstrained and the
necessary information about dynamics of robot
arms, actuators and kinematics is available. As
for the force control, various methods have
been proposed in the literature[1-3]. An
overview is given by[4]. The common tendency
of these papers is trying to introduce dynamic
and kinematic compensations as precisely as
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possible to satisfy the precise requirements for
various manipulation. However, dynamic and
kinematic compensation may fail to work in ac-
cordance with force control requirements due
to the lack of perfect models about the robot

arm, actuators and the environment the robot
interacts with. In most cases these uncertain-
ties are

(1) uncertainties of robotic mechanism, mainly
the unmeasurable friction coefficients in-
cluding both viscous and static ones of ac-
tuators and links
uncertainties caused by the unknown pa-
rameter changes, e.g. the variation of pay-
loads
uncertainties due to the lack of the priority
knowledge concerning the environment,
such as the stiffness of environment and
the exact position of contact surface
uncertainties existed in measurements, in-
cluding the sensor resolution and noises in
external and internal sensors

In this paper, our discussion will concentrate
on the third kind of uncertainties. Since the
precise quantitative control fails to obtain good
performance when uncertainties exist, it is nat-
ural then to imitate human operators under the
same circumstance. Based on the heuristic ex-
perience, human operators can complete com-
plex manipulation with ambiguous information,
although it may not be very well in the sense
of accuracy or optimization. Note that in most
of robotic manipulations, the control can be al-
lowed “coarse” before approaching the desired
destination. Therefore system performance can
be improved without losing other properties.

Based on this conception, the rule based
fuzzy control method is introduced, which im-
plements human like control by introducing
knowledge based fuzzy compensation into con-
trol systems to provide efficient solution in the
case that stiffness of the environment is un-
known a priori. The application of fuzzy ap-
proach to servo control system has been re-
ported[S]. As for the multi degree of freedom
robot arms, the intuition and experience based

(2)

(3)

4)



fuzzy coatrol can not be directly applied to be-
cause of the complexity of the robotic mecha-
nisms and the environment. Therefore it is
necessary for the control system to incorporate
both the dynamical, kinematic compensation
control function™ and the knowledge based
heuristic control function.

In this paper, the combination of a modified
resolved acceleration position/force control and
a fuzzy control are introduced investigated. In
section 2, the precise model of an n joints
robotic arm and actuators is given. In section 3,
discussion on the dynamic compensation for
hybrid position/force control is given to the
case the accurate information is available. Due
to the excising ambiguities around the environ-
ment,the dynamic compensation method may
result in the deterioration in control perfor-
mance. An rule based fuzzy compensation is
then proposed in Section 4, which consists of a
set of rules that implement relevant knowledge
into the control system, and apply the fuzzy
reasoning to acquire the appropriate control
adjustment. Section 5 examines several simu-
lation results to show the improved control
performance. Conclusions are presented in
Section 6.

2. MODELING OF ROBOT ARMS

Based on the Lagrangian formulation, it is
easy to derive the dynamics of a rcbot arm. For
convenience, considering a nonredudant robot
arm with n joints that can be expressed by fol-
lowing equations.

Iulg)d + hig.q)+ glg) + C.g + Cysgn{g) + C{I-sgr{ q))
=t-I7f (1)

where de R# are the vectors defining joint ac-
celerations, 7e R" is the vector of joint input
torques come from actuators, fe Rnis the vector
of contact forces that the environment acts
upon the end point of the robot arm in the
Cartesian coordinate frame, J,,(q)e Rn*n de-
notes the nonsingular inertia matrix, h(q,‘i)
represents the Coriolis', centrifugal forces,
g(g)e Rn represents the gravitational forces,
J(g)e Rn*r is the Jacobian matrix and J7(q) is
its transpose; Cy, Cq and Cse R" are the viscous,
coulomb and static friction coefficient matrices
of the joints respectively. Usually the motor in-
ductances are small enough to be neglected in
practice. Therefore the following brief form is
obtained

R+ K. q=v,

. (2)
Dg+w=Kj

(3)
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where K=t is the torque,

D= .’a + JM (4)
@=h+g+(Cy+B.) +(Cq+Bylsgn(g)
+ (Cs+BYI-sgr41)-J'f (5)
3. HYBRID CONTROL WITH RESOLVED

ACCELERATION

The control input of the proposed resolved
acceleration position/force control is of

7= w+DJY({I-S)* + SK., 'f* - Jq]

(6)
x> =%4+ Kppligx)+ Kpp(x 4-x) (N
f* =fa+ Keplfaf) + Keplfaf) (8)

Matrices Kpp and Kpp are the servo joint D gain
and P gain of position control, Krp is the P gain
of force control. § is a diagonal matrix that de-
termines which axes are to be force controlled
and which are to be position controlled. For
simplicity, in the paper we assume S=diag(0,-
mIm). I, I, are the unit matrices. 0., repre-
sents the zero matrix. K.q is the equivalent
stiffness of environment and force sensors. f
can be calculated as K.gx. Using the dynamic
relation (2) and dynamic control (6), we get
following relationship in Cartesian space.

nN={-SMp+8Snr=0 (9)
Np =(Xs-X}+ Kpplks%) + Kpp(x4-x) (10)
np=faf) + Kpplfaf) + Kedfaf) (11)

It is obvious that the complex nonlinear dy-
namics is fully compensated and the robotic
arm system is decoupled, i.e. Sn/~=0 and (I-
$)np=0 are satisfied simultanecously. The feed-
back gain matrices pair Krp and Krp, Kpp and
Kpp are specified such that the linearized sec-
ond order system (10) and (11) achieve critical
damping responses. In this case, the P gains
and D gains have the following relations.

Kpp?=4Kpp
Kpp? = 4Kpp

(12)
(13)

4. FUZZY DYNAMIC COMPENSATION

In the hybrid position/force control, the addi-
tional information about the equivalent stiff-
ness is needed to realize the complete nonlin-
ear compensation. In practice it is seldom that
Keq is available. Therefore in this section we
first design an overdamping controller to avoid
overshoot or oscillation, then adding a fuzzy
compensation to speed up system response as
fast as possible. Here we only consider the



regulator problem in the hybrid position/force
control, thus only the constant position refer-
ence x4 and force reference fy are under con-
sideration.

4-

Supposed the equivalent stiffness K¢q ranges
from Kpin to Kmax which are known bound-
aries. In order to avoid overshoot in hybrid
position/force control, the control input is de-
signed according to the most stiff case.
Therefore, the dynamic compensation (6) is of
the form

t=w+DJI-Sk*+SK. 1 - Jg) (14)
where K., is selected equal to K,ugqx. This design
will, however, result in such problem as system
responses along constrained coordinates are
extremely delayed due to the low gain prop-
erty. By substituting (14) into (9) yielding

p=-f - Kenf + Kedfa-f) = (1K o 'KepXfu-f)

(15)
that is, the force controlled subsystem in
Cartesian space has a second order transfer
function:

(s + Kpps + KooKei 'Krplfis) = fuls (16)
Whenever Kgg<Ket=Kmax the system will be
characterized as an over damped one.

1-2. Consid . f fuzz .

To speed up system responses, a reasonable
consideration is to identify the equivalent stiff-
ness K.y from system responses. In practice it
is difficult to identify the equivalent stiffness
directly from system responses due to the high
nonlinearity of robot mechanisms and the wide
range that the environment stiffness would be.
On the other hand, with dynamic compensation
the system behaves an overdamped system of
second order as show in (16).

Therefore there is a possibility of approxi-
mately estimating unknown equivalent stiff-
ness. In detail, a set of predetermined fuzzy
rules is established. Each of these rules pro-
vides a sample that describes the relationship
between the output of a second order system
and the unknown stiffness in a particular sit-
uation. These rules are then combined to form
a decision table for the fuzzy dynamic compen-
sation. Finally, based on the fuzzy set theory an
approximate reasoning is used to evaluate pre-
sent system responses and derive appropriate
control operation

The design procedure of fuzzy dynamic com-
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pensation, including both establishment of
fuzzy rules and choosing fuzzy reasoning, is
briefly explained below. For simplicity only a
scalar force controlled subsystem is considered.
However, the results can be easily extended to
multi-variable force control subsystem of the
hybrid position/force cases.

4-3._Impl . £ f i .
compensation
Reference Model
A reference model (17) with critical damping
and proper frequency is selected in order that

fast system responses can be achieved without
overshoot.

ﬂs):l/s{s +2§ws+a)2) (17
The PD gains of the force controlled subsys-
tem are designed such that the real system re-
sponses are the same as the reference if no
environment uncertainties are existed.

Sample set

Suppose the unknown equivalent stiffness
K4 varies from Keq(min)=102[N/m] to
Keg(max)=103[N/m]. To investigate how the
equivalent stiffness influences the system be-
haviors, the range of the stiffness is divided
into ten sample levels W = {VS, So, QS, RS, LS, N,
LH, RH, QH, H} as follows.

Keq = 100 - VS (Very Soft)
Keq = 500 - So (Soft)

Keq = 1000 -  0S (Quite Soft)
Keqg = 1800 -» RS (Rather Soft)
Keq = 3000 -» LS (a Little Soft)
Keg = 5000 - L (Normal)

Keq = 8000 — LH (a Little Hard)
Keq = 12000 — RH (Rather Hard)
Keg = 3x104 - OH (Quite Hard)
Keq = 1x10° — H (Hard)

Substituting the ten sample value into the
real system model and let the estimated
Ke=103, then the system response of the force
controlled coordinate will be characterized by

¥s) = Usls +2¢ws + w?) (18)

where i=1,--,10 corresponding to the ten levels
of the stiffness from "VS" to "H" . The influences

from K.q can then be investigated in detail:
wi=VKFPKquma£I (19)
Ci= Krp = []Emax
2WVKrPK eqKmar” Keq (20)



It is clear that except for the case K.y ="H" ,
all the damping coefficients {;>1. By using the
reference models, system response yw({;) at
any moment fj can be calculated previously
corresponding to each sample level

We W={VS, So, QS, RS, LS, N, LH, RH, QH, H}.

Quantization of system states

Owning to the over damping property, the
system states f are simply quantized without
considering the sign. In this paper , to restrict
the number of control rules, ten fuzzy subsets

Y={VS, Sm, QS, RS, LS, M, LB, RB, OB, B}

are used to evaluate system states with respect
to the sample levels of the equivalent stiffness.
The abridged words in Y represent "Very
Small", "Small","Quite Small","Rather Small","a
Little Small”,"Medium", "a Little Big","Rather
Big","Quite Big",and"Big" respectively.

It is easy then to extract the quantitative
relationship among the fuzzified system state y
and the stiffness K.; from the equation (18).
Those relationship are finally concluded in fol-
lowing rule form so as to facilitate the real time
approximate reasoning

IF y(1j) is Yw(;) THEN Keqis W (21)

where Yw(tj)eY and We W.

Approximate reasoning

The environment stiffness is calculated by
using following approximate reasoning. First
the system output measured by force sensor at
moment f; is normalized as

() = 1faplfal .

Suppose the output is located between two
neighboring sample states Yw-(t;) and Yw-(t;)
where W’ and W"” belong to W_and W’ <W".
Then the coincidence of y(¢;) with Yw(¢j) and
Yw-(tj) are calculated as follows

1y, (6] = PO Gy O Fy @),

where Fy(:) and F3(-) are membership func-
tions. Figure 1 shows the selected membership
function of trigonometric type. The equivalent
stiffness is estimated approximately as

Ko = {KeqW Wy, (i DORK oW Yy, (1 ply ) 4
(24)

A= gy ()Y@ + By (1) @) (25)
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where Keq(W’) and K.4(W") represent the nu-
merical value of the equivalent stiffness at
sample levels W' and W”. In order to mitigate
sampling deviation or measurement noise, it is
necessary to sample system outputs over some
period, which leads to establish a large sample
set for approximate reasoning at different
sampling moment f;. To restrict the sample
number in the sample set, only a few of refer-
ence samples are given previously at several
fixed moment {tj}. The necessary sample
amongst two moment ¢ and f;+1 is interpolated
through following on-line calculation.

Vte[tj,tj+1], ‘VWEK
Yo(e) = Yw(fj+1)-YW(fg)[t_tj) + Yw)

Liv1-tj (25)

5. SIMULATION RESULTS

To investigate the effectiveness of the re-
solved acceleration position/force control and
fuzzy compensation proposed in this paper, a
robotic arm with three rotating joints is
used(Figure 2). The first link is supposed to
rotate around Z axe with the radius being zero.
The second and third links are supposed to
move inside one plane perpendicular to the X-Y
plane.

The length of the three links are 0.1[m],
0.5[m], and 0.5[m] respectively. The induc-
tances of servomotors are (0.0017L, 0.0009L,
0.0009L) which is small enough to be ignored.
The equivalent stiffness is assumed varying
from Keq(m;n)=102[N/m] to Keq(max)=105[N/m].
The end point of robot arm is initially rest at
point (0.4, 0, 0) in Cartesian space; the desired
point is (0, 0.5, 0). The robotic arm contacts the
environment along the Z direction and keep
free motion in X and Y axes. The feedback gain
matrices for P control and D control are
selected as

Kpp = diag(25, 25, 25)
Kpp = diag(10, 10, 10)
Krp = diag(100, 100, 100)
Krp = diag(20, 20, 20)

that specify both position and force control re-
sponses in Cartesian space to be a critical
damping one with their frequencies being
VKpp =5 and VKrp =10 rad/sec respectively.
The reference model for force control part is
therefore determined. The sampling period is
1[msec].



5.2, Simulati Resul

Figure 3 shows the case where directions X
and Y are chosen to be position controlled and
direction Z to be force controlled. The equiva-
lent stiffness is exactly known as 15000}N/m].
With resolved acceleration position/force con-
irol, system shows perfect critical damping re-
sponses both among the position controlled and
torce controlled coordinates. From figure 4 we
can observe that the system behaves nearly
the same as figure 3 although the equivalent
stiffness changes from 15000{N/m] to
1500[N/m] and 1SO[N/m]. On the other hand,
figure 5 shows that system outputs are greatly
delayed when the conservative initial estima-
tion of equivalent stiffness Kei=Knax=103[N/m]
is far more large than the real value Kegq.

The movement of robot arm along z coordi-
nate with fuzzy compensation is illustrated in
Figure 6. The fast the system response is re-
quired, the smaller the sample moment ¢
should be. For simplicity we only select two
sample moment t;=0.1[sec] and 3=0.15[sec].
Therefore totally 20 fuzzy rules are used.
Figure 6 shows the force control result where
the trigonometric type membership function of
Figure 1 is used. The estimated equivalent
stiffness K ¢¢ are about 16213.5{N/m],
1538.5[N/m] and 153.9[N/m] when the real Keg
are 15000[N/m], 1500{N/m] and 150[N/m] re-
spectively.The estimated value is about 2%-10%
higher than the true value. The reason is that,
in (26) a linear approximate is used to repre-
sent a curve which is essentially a convex
function of time ¢. Therefore the fuzzy reason-
ing gives a conservative estimation to the
equivalent stiffness, which just satisfies both
requirement of speeding up the system re-
sponse and avoiding overshoot. From figure 6
one can confirm that the force controlled sub-
system shows the critical damping property in
the case the fuzzy compensation is added.

6. CONCLUSION

In this paper, the resolved acceleration posi-
tion/force control with the rule based fuzzy
dynamic compensation has been presented and
applied to the hybrid position/force manipula-
tion. The basic consideration and brief control
design procedures were introduced, and the
control performances have been shown through
several simulation examples. The trade-off
between the fast system response and no over-
shoot is achieved by introduction both the ac-
curate dynamic compensation which is based
on the exact model, and the approximate dy-
namic compensation which is implemented
with heuristic control rules.
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Figure 1. Membership function of trigonometric type

Figure 2. Robot arm of 3 D.OF. in Canesian space
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Figure 3. System response of resolved accleration

position/force control with exact dynamic
compensation
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Figure 5. System response of resolved accleration
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equivalent stiffness
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Figure 6. System response of resolved accleration
position/force control with fuzzy
compensation



