• Title/Summary/Keyword: Industrial Processes

Search Result 2,866, Processing Time 0.039 seconds

Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area (울산지역 사문암의 형성환경 해석을 위한 예비연구)

  • Koh, Sang-Mo;Park, Choong-Ku;Soh, Won-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.325-336
    • /
    • 2006
  • Domestic serpentinite is one of the important industrial minerals utilizing in the iron manufacturing company such as POSCO in Korea. Serpentinite is distributed in the Ulsan Fe deposit, Andong, Hongseong-Cheongyang, and Gapyeong areas. This study tries to interpret the relationship among the formation of carbonate rocks, iron mineralization, and serpentinite alteration throughout the study of field occurrence, mineralogy, and chemical compositions. Serpentine is formed by the break-down of olivine and pyroxene of parent peridotite. The serpentinization is inferred to be formed by the hydrothermal fluid derived from intruded Cretaceous granite and the addition of meteoric water. Variation of major oxides such as $SiO_2,\;Fe_2O_3$, and MgO in serpentinized rocks are controlled by the degree of serpentinization and Fe mineralization. Variation of $Al_2O_3$ and CaO contents of altered rocks is dependent on the amount of the residual minerals such as calcite and homblende, and on the degree of chloritization. The presence of carbonate rocks reported in the sedimentary origin or igneous origin (carbonatite) provided a geological environment to form skarn type Fe deposit regardless of its origin. The geological processes of Ulsan Fe deposits are inferred to be formed as the order of the formation of carbonate rocks ${\to}$ the intrusion of Cretaceous granite ${\to}$ serpentinization ${\to}$ Fe mineralization by the interprelation of field occurrence and mineralogical characteristics.

Hydrolytic and Metabolic Capacities of Thermophilic Geobacillus Isolated from Litter Deposit of a Lakeshore (수변 낙엽퇴적층에서 분리한 호열성 Geobacillus의 물질 분해 특성)

  • Baek, Hyun-Ju;Zo, Young-Gun;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.32-40
    • /
    • 2009
  • To understand contribution of thermophilic microorganisms in decomposition of litter deposits on shore of lakes, we surveyed a lakeshore litter deposit for bacteria growing at $60^{\circ}C$. Ten thermophilic isolates were selected for in-depth characterization, based on their high capacity to degrade high molecular weight organic compounds. Based on phylogenetic analysis on their 16S rRNA gene sequences, all isolates were identified as Geobacillus. The optimal growth temperature and pH of the strains ranged $55{\sim}60^{\circ}C$ and 6.0${\sim}$8.0, respectively. Salinity was inhibitory to the growth of the isolates, showing marked decrease of growth rates at 3% salinity. Based on activities of hydrolytic enzymes and profiles of carbohydrate utilization (determined by API 50 CHB kit), three G. stearothermophilus strains showed patterns clearly distinctive from other isolates. Two G. kaustophilus strains also demonstrated distinctiveness in their metabolic pattern and ecological parameters. However, ecological and metabolic profiles of the other five isolates were more variable and showed some degree of digression from their phylogenetic classification. Therefore, it could be concluded that endospore-forming thermophilic bacteria in lakeshore litter deposits contribute to degradation of organic materials with diverse ecological niches while having successions similar to microbial flora in compost. We propose that the thermophilic isolates and/or their thermo-tolerant enzymes can be applied to industrial processes as appropriate mixtures.

Scenario-Based Implementation Synthesis for Real-Time Object-Oriented Models (실시간 객체 지향 모델을 위한 시나리오 기반 구현 합성)

  • Kim, Sae-Hwa;Park, Ji-Yong;Hong, Seong-Soo
    • The KIPS Transactions:PartD
    • /
    • v.12D no.7 s.103
    • /
    • pp.1049-1064
    • /
    • 2005
  • The demands of increasingly complicated software have led to the proliferation of object-oriented design methodologies in embedded systems. To execute a system designed with objects in target hardware, a task set should be derived from the objects, representing how many tasks reside in the system and which task processes which event arriving at an object. The derived task set greatly influences the responsiveness of the system. Nevertheless, it is very difficult to derive an optimal task set due to the discrepancy between objects and tasks. Therefore, the common method currently used by developers is to repetitively try various task sets. This paper proposes Scenario-based Implementation Synthesis Architecture (SISA) to solve this problem. SISA encompasses a method for deriving a task set from a system designed with objects as well as its supporting development tools and run-time system architecture. A system designed with SISA not only consists of the smallest possible number of tasks, but also guarantees that the response time for each event in the system is minimized. We have fully implemented SISA by extending the ResoRT development tool and applied it to an existing industrial PBX system. The experimental results show that maximum response times were reduced $30.3\%$ on average compared to when the task set was derived by the best known existing methods.

Applications of Mathematical Optimization Method for Chemical Industries (화학 산업에서 수학적 최적화 기법을 적용한 사례)

  • Kim, Eun-Yong;Heo, Soon-Ki;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • Executions of SCM in a chemical company of which divisions produce petrochemicals, compounds, batteries, IT material and medicine directly affect their own profit. Execution level of SCM or optimization is very important. This work presents activities of SCM and optimization of inefficient issues in several industrial divisions using mathematical optimization method. The meaning is not only academic research but also making a useful tool which active partner deals with in his work. It is explained how to do beforehand and afterward optimization problem. The benefits are mentioned in the sections. The first of examples would be cover supply plan optimization, optimal profit business plan, and scheduling of a stretching process of polarizer based on minimizing raw material loss in polarizer production. The second example would be cover the optimization of production/packaging plans to maximize productivity of Poly Olefin processes, and the third example is minimization of transition loss in the production of battery electrodes. The fourth example would be cover scheduling of vessel approaching to berth. Because transportation of large portion of raw material and products of petrochemical industry is dealt with vessel, scheduling of vessel approaching to berth is important at the shore of large difference of tide. The final example would be scheduling problem to minimization of change over time of ABS semi products.

Cloning and Characterization of a Novel Mannanase from Paenibacillus sp. BME-14

  • Fu, Xiaoyu;Huang, Xiaoluo;Liu, Pengfu;Lin, Ling;Wu, Gaobing;Li, Chanjuan;Feng, Chunfang;Hong, Yuzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.518-524
    • /
    • 2010
  • A mannanase gene (man26B) was obtained from a sea bacterium, Paenibacillus sp. BME-14, through the constructed genomic library and inverse PCR. The gene of man26B had an open reading frame of 1,428 bp that encoded a peptide of 475- amino acid residues with a calculated molecular mass of 53 kDa. Man26B possessed two domains, a carbohydrate binding module (CBM) belonging to family 6 and a family 26 catalytic domain (CD) of glycosyl hydrolases, which showed the highest homology to Cel44C of P. polymyxa (60% identity). The optimum pH and temperature for enzymatic activity of Man26B were 4.5 and $60^{\circ}C$, respectively. The activity of Man26B was not affected by $Mg^{2+}$ and $Co^{2+}$, but was inhibited by $Hg^{2+},\;Ca^{2+},\;Cu^{2+},\;Mn^{2+},\;K^+,\;Na^+$, and $\beta$-mercaptoethanol, and slightly enhanced by $Pb^{2+}$ and $Zn^{2+}$. EDTA did not affect the activity of Man26B, which indicates that it does not require divalent ions to function. Man26B showed a high specific activity for LBG and konjac glucomannan, with $K_m,\;V_{max}$, and $k_{cat}$ values of 3.80 mg/ml, 91.70 ${\mu}mol$/min/mg protein, and 77.08/s, respectively, being observed when LBG was the substrate. Furthermore, deletion of the CBM6 domain increased the enzyme stability while enabling it to retain 80% and 60% of its initial activity after treatment at $80^{\circ}C$ and $90^{\circ}C$ for 30 min, respectively. This finding will be useful in industrial applications of Man26B, because of the harsh circumstances associated with such processes.

Mechanical Properties and 3D CAD Images of the Appearance of Knitted Fabric with Acetate/Polyester Composite Yarn by Different Yarn Twisting Methods (연사방법에 따른 아세테이트/폴리에스터 복합사 편성물의 역학적 특성 및 3D CAD System에 의한 외관특성)

  • Kim, So-Jin;Jeon, Dong-Won;Park, Young-Hwan
    • Textile Coloration and Finishing
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2006
  • The purpose of this study was to eximine the effect of different yam twisting methods on mechanical properties and 3D CAD images of plain knitted fabrics made of composite yarns. Six yams were used in this study: four different composite yams of the six consist of acetate and functional polyester (Poly-m) with the ratio of 70:30, and the rest two are the original acetate $100\%$ yam and the poly-m $100\%$ yarn. The four kinds of composite yarns were processed in combinations of twisting processes such as interlacing, false twisting, two for one twisting, combined twisting and single covering, and the two original yams were knitted without any twisting process. Sixteen mechanical properties of all the six knitted fabrics, knitted under the same knitting conditions, were measured by KES-FB system with the outer knit condition. The results were as follows; 1) When the sample applied with the false twisting process at the temperature as high as $220^{\circ}C$, ENT, B, HB, G and RC values of samples increased which leads to increasing dimensional stability. 2) To gain the high bending and shear properties in the single covering process, selecting the core yarn with such properties is the most important factor. 3) Interlacing process effected to increase RC value. 4) False twisting process after interlacing process gave bulkiness and un-interlaced part in yam was increased SMD value. The SMD value of the kilted fabric of the composite yarn, which was put through the combined twist process, was higher than those of which simple process such as the two for one twist or the single covering process applied. In order to achieve the silk-like surface feel of knitted fabric, the sin91e covering process is recommended. 5) Examining the simulation images of the knifed fabrics of composite yarn, which were generated by the 3D CAD system based on the mechanical properties of the fabric, led that appearance could be changed as different twisting methods were applied.

Assessing Biological Safety of the Hanwoo Serum Obtained During Slaughtering Process (도축되는 한우 혈액에서 회수한 혈청의 생물학적 안전성 분석)

  • Kim, Min-Soo;Yu, Ji-Eun;Min, Kyung-Ho;Kim, Ji-Hoe;Choi, In-Ho;Nahm, Sang-Soep
    • Journal of Animal Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • Bovine serum contains various nutrients and growth factors that can be potentially used in biological experiments, drug manufacturing process and food industry. However, almost all the bovine blood has been wasted during slaughter process in Korea, thus there is a high demand for alternative uses of the wasted sera. In order to produce high quality and safe sera, it is necessary to screen zoonotic pathogens as well as other microbial contaminants to prevent any downstream contamination. The present research has been undertaken to assess biological safety of Hanwoo sera by determining microbiological contamination during slaughtering and handling processes. Serological tests have been performed to detect bacteria, mycoplasma and virus contamination in total of 52 Hanwoo sera. No sera were found to be contaminated with mycoplasma or virus, but only two sera were found to be contaminated with Bacillus thuringiensis. The present result shows that Hanwoo sera obtained from slaughtering process are biologically safe and have potentials to be developed as a biological reagent. Moreover, the methods employed in our study may provide basic standard for microbiological screening methods once wasted Hanwoo sera gain industrial values.

Development of Quantitative Exposure Index in Semiconductor Fabrication Work (반도체 FAB근무에 대한 정량적 노출지표 개발)

  • Shin, Kyu-Sik;Kim, Taehun;Jung, Hyun Hee;Cho, Soo-Hun;Lee, Kyoungho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Objectives: It is difficult to identify exposure factors in the semiconductor industry due to low exposure levels to hazardous substances and because various processes take place in fabrication (FAB). Furthermore, a single worker often experiences a variety of job histories, so it is difficult to classify similar exposure groups (SEG) in the semiconductor industry. Therefore, we intend to develop a new exposure index, the period of working in FAB, that is applicable to the semiconductor industry. Methods: First, in specifying the classification of jobs, we clearly distinguished whether they were FAB workers or non-FAB workers. We checked FAB working hours per week through questionnaires administered to FAB workers. We derived an exposure index called FAB-Year that can represent the period of working in FAB. FAB-Year is an index that can quantitatively indicate the period of working in FAB, and one FAB-Year is defined as working in FAB for 40 hours per week for one year. Results: A total of 8,453 persons were surveyed, and male engineers and female operators occupied 90% of the total. The average total years of service of the subjects was 9.7 years, and the average FAB-Year value was 6.8. This means that the FAB-working ratio occupies 70% of total years of service. The average FAB-Year value for female operators was 8.4, for male facility engineers it was 7.7, and for male process engineers it was 3.5. A FAB-Year standardization value according to personal information (gender, job group, entry year, retirement year) for the survey subjects can be calculated, and standardized estimation values can be applied to workers who are not participating in the survey, such as retirees and workers on a leave of absence (LOA). Conclusions: This study suggests an alternative method for overcoming the limitations on epidemiological study of the semiconductor industry where it is difficult to classify exposure groups by developing a new exposure index called FAB-Year. Since FAB-Year is a quantitative index, we expect that various approaches will be possible in future epidemiological studies.

A Two-Stage Process, $O_3$ and Subsequent $O_3/H_2O_2$, for Effective Color Removal from Leather-Dyeing Wastewater: Case Study in the D Industrial Wastewater Treatment Plant (피혁염색폐수의 색도저감을 위한 오존, 오존/과산화수소 2단 공정에 관한 연구: D 산업폐수처리장 사례연구)

  • Yoon, Yeojoon;Park, Moonki;Kwon, Minhwan;Jung, Youmi;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • The aim of this study is to evaluate color removal from leather-dyeing wastewater using $O_3$ and $O_3/H_2O_2$ unit processes and a serial process for $O_3$, followed by the $O_3/H_2O_2$ process. The color removal rate of the $O_3$ alone process was only 65% effective, and the color increased when an applied $O_3$ dose of more than 40 ~ 50 mg/L was applied. On the other hand, the color was completely removed without increments of color by the $O_3/H_2O_2$ process with $H_2O_2$ injection ratio of 0.2 and 0.3 (wt. $H_2O_2$/wt. $O_3$). Even though the injection of $H_2O_2$ had an effect on color removal, the color removal rates from $O_3$ alone and from $O_3/H_2O_2$ were similar up to the initial $O_3$-demand stage with an application of 0 ~ 40 mg/L $O_3$. In conclusion, it was found that the $O_3$ followed by the $O_3/H_2O_2$ serial process, the method injecting $H_2O_2$ after ozonation with $O_3$-demand (30 ~ 40 mg/L) in the first stage, is the most appropriate process for effective color removal from leather-dyeing wastewater.

Clean Room Structure, Air Conditioning and Contamination Control Systems in the Semiconductor Fabrication Process (반도체 웨이퍼 제조공정 클린룸 구조, 공기조화 및 오염제어시스템)

  • Choi, Kwang-Min;Lee, Ji-Eun;Cho, Kwi-Young;Kim, Kwan-Sick;Cho, Soo-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.202-210
    • /
    • 2015
  • Objectives: The purpose of this study was to examine clean room(C/R) structure, air conditioning and contamination control systems and to provide basic information for identifying a correlation between the semiconductor work environment and workers' disease. Methods: This study was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. The C/R structure and air conditioning method were investigated using basic engineering data from documentation for C/R construction. Furthermore, contamination parameters such as airborne particles, temperature, humidity, acids, ammonia, organic compounds, and vibration in the C/R were based on the International Technology Roadmap for Semiconductors(ITRS). The properties of contamination control systems and the current status of monitoring of various contaminants in the C/R were investigated. Results: 200 mm and 300 mm wafer fabrication facilities were divided into fab(C/R) and sub fab(Plenum), and fab, clean sub fab and facility sub fab, respectively. Fresh air(FA) is supplied in the plenum or clean sub fab by the outdoor air handling unit system which purifies outdoor air. FA supply or contaminated indoor air ventilation rates in the 200 mm and 300 mm wafer fabrication facilities are approximately 10-25%. Furthermore, semiconductor clean rooms strictly controlled airborne particles(${\leq}1,000{\sharp}/ft^3$), temperature($23{\pm}0.5^{\circ}C$), humidity($45{\pm}5%$), air velocity(0.4 m/s), air change(60-80 cycles/hr), vibration(${\leq}1cm/s^2$), and differential pressure(atmospheric pressure$+1.0-2.5mmH_2O$) through air handling and contamination control systems. In addition, acids, alkali and ozone are managed at less than internal criteria by chemical filters. Conclusions: Semiconductor clean rooms can be a pleasant environment for workers as well as semiconductor devices. However, based on the precautionary principle, it may be necessary to continuously improve semiconductor processes and the work environment.