A Two-Stage Process, $O_3$ and Subsequent $O_3/H_2O_2$, for Effective Color Removal from Leather-Dyeing Wastewater: Case Study in the D Industrial Wastewater Treatment Plant

피혁염색폐수의 색도저감을 위한 오존, 오존/과산화수소 2단 공정에 관한 연구: D 산업폐수처리장 사례연구

  • Yoon, Yeojoon (Department of Environmental Engineering, Yonsei University) ;
  • Park, Moonki (Department of Environmental Engineering, Yonsei University) ;
  • Kwon, Minhwan (Department of Environmental Engineering, Yonsei University) ;
  • Jung, Youmi (Department of Environmental Engineering, Yonsei University) ;
  • Kang, Joon-Wun (Department of Environmental Engineering, Yonsei University)
  • Published : 2013.01.30

Abstract

The aim of this study is to evaluate color removal from leather-dyeing wastewater using $O_3$ and $O_3/H_2O_2$ unit processes and a serial process for $O_3$, followed by the $O_3/H_2O_2$ process. The color removal rate of the $O_3$ alone process was only 65% effective, and the color increased when an applied $O_3$ dose of more than 40 ~ 50 mg/L was applied. On the other hand, the color was completely removed without increments of color by the $O_3/H_2O_2$ process with $H_2O_2$ injection ratio of 0.2 and 0.3 (wt. $H_2O_2$/wt. $O_3$). Even though the injection of $H_2O_2$ had an effect on color removal, the color removal rates from $O_3$ alone and from $O_3/H_2O_2$ were similar up to the initial $O_3$-demand stage with an application of 0 ~ 40 mg/L $O_3$. In conclusion, it was found that the $O_3$ followed by the $O_3/H_2O_2$ serial process, the method injecting $H_2O_2$ after ozonation with $O_3$-demand (30 ~ 40 mg/L) in the first stage, is the most appropriate process for effective color removal from leather-dyeing wastewater.

본 연구에서는 오존과 오존/과산화수소 공정을 단독공정과 연속공정으로 각각 적용하여 피혁염색폐수의 색도 저감을 평가하였다. 오존 단독공정에서 색도 저감율은 65%였고, 오존 농도가 40 ~ 50 mg/L 이상으로 주입되면 오히려 색도가 증가하는 경향을 나타냈다. 반면에 오존/과산화수소 공정에서는 과산화수소 주입율을 오존 질량 대비 0.2와 0.3비율로 하였을 때, 색도의 증가 없이 완벽히 제거되었다. 비록 과산화수소의 주입이 색도 저감을 증가시키지만, 초기오존 소모량 구간에서는 과산화수소를 주입하여도 오존 단독 공정과 색도 저감율에서 큰 차이를 보이지 않았다. 결론적으로, 1단계에서 오존 단독공정으로 오존 소모량을 만족시켜주고 (30 ~ 40 mg/L), 그 이후에 과산화수소를 주입 하여 오존/과산화수소 연속 공정을 적용하는 것이 본 피혁 염색폐수의 색도 저감에 가장 효과적인 공정으로 평가되었다.

Keywords

References

  1. American public health association (APHA). (2005). Standard Methods for the Examination of Water & Wastewater, 21sted, Washington, D. C.
  2. Amiri, A. S., Bolton, J. R., and Cater, S. R. (1997). Ferrioxalate Mediated Photodegradation of Organic Pollutants in Contaminated Water, Water Research, 31, pp. 787-798. https://doi.org/10.1016/S0043-1354(96)00373-9
  3. An, Y. J. and Carraway, E. R. (2002). PAH Degradation by $UV/H_2O_2$ in Perfluorinated Surfactant Solutions, Water Research, 36, pp. 309-314. https://doi.org/10.1016/S0043-1354(01)00206-8
  4. Bennett, L. and Drikas, M. (1993). The Evaluation of Color in Natural Water, Water Research, 27, p.1209. https://doi.org/10.1016/0043-1354(93)90013-8
  5. Benson, S. W. and Nangia, P. S. (1980). Electron Affinity of $HO_2$ and HOx Radicals, Journal of the American Chemical Society, 102(8), pp. 2843-2844. https://doi.org/10.1021/ja00528a057
  6. Bodalo, A., Gomez, E., and Hidalgo, A. M. (2009). Membrane Processes for Treatment of Industrial Tannery Effluents: A Case Study, Pabby, A. K., Rizvi, S. S. H. and Sastre, A. M. Handbook of Membrane Separations, CRC Process, Florida, pp. 1087-1088.
  7. Carriere, J., Jones, J. P., and Broadbeut, A. D. (1993). Effect of a Dyeing Aid on the Oxidation Reaction of Color from an Insoluble and a Soluble Dye in a Simulated Effluent, Proceedings of the 11th Ozone World Congress, pp. 98-107.
  8. Christensen, H. S., Sehested, H., and Corfitzan, H. (1982). Reaction of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures, Journal of Physical Chemistry, 86, pp. 15-88.
  9. Costa, C. R., Botta, C. M. R., Espindola, E. L. G., and Olivi, P. (2008). Electrochemical Treatment of Tannery Wastewater using DSA Electrodes, Journal of Hazardous Materials, 153, pp. 616-627. https://doi.org/10.1016/j.jhazmat.2007.09.005
  10. Glaze, W. H. and Kang, J. W. (1989). Description of a Kinetic Model for the Oxidation of Hazardous Materials in Aqueous Media with Ozone and Hydrogen Peroxide in a Semi-batch Reactor, Industrial & Engineering Chemistry Research, 28, pp. 1573-1580. https://doi.org/10.1021/ie00095a001
  11. Glaze, W. H., Kang, J. W., and Chapin, D. H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation, Ozone: Science & Engineering, 9(4), pp. 335-352. https://doi.org/10.1080/01919518708552148
  12. Gonzalez, G., Pena, M. M., Garcia, M. T., and Uruena, M. A. (1999). Decolorization of Molasses Effluents by Coagulation-Flocculation Process, Zuckerindustrie, 124, pp. 406-410.
  13. Gottschalk, C., Libra, J. A., and Saupe, A. (2000). Ozonation of Water and Wastewater: a Practical Guide to Understand Ozone and Its Application, Wiley-VCH, Weinheim.
  14. Gulyas, H., von Bismarck, R., and Hemmerling, L. (1995). Treatment of Industrial Wastewaters with Ozone/hydrogen Peroxide, Water Science and Technology, 32(7), pp. 127-134.
  15. Hongve, D. and Akesson, G. (1996). Spectrophotometric Determination of Water Colour in Hazen Units, Water Research, 30, p. 2771. https://doi.org/10.1016/S0043-1354(96)00163-7
  16. Jochimsen, J. C. and Jekel, M. R. (1997). Partial Oxidation Effects During the Combined Oxidative and Biological Treatment of Separated Streams of Tannery Wastewater, Water Science and Technology, 35(4), pp. 337-345.
  17. Kang, T. H., Oh, B. S., Park, S. J., Kang, M. G., Kim, J. S., and Kang, J. W. (2005). A Study on the Dye Wastewater Treatment by Advanced Oxidation Processes, Journal of Korean Society on Water Environment, 21(3), pp. 267-273. [Korean literature]
  18. Kim, M. K., Seo, S. J., and Shin, E. B. (2006). Biological Decolorization Characteristics of Dyeing Wastewater, Journal of Korean Society on Water Environment, 22(2), pp. 333-341. [Korean literature]
  19. Lee, J. H., Park, J. H., Nam, H. U., Kim, Y. G., and Park, T. J. (2000). Characteristics of Refractory Organic and Color removal in Pigment Wastewater by Advanced Oxidation Process, Journal of Korean Society on Water Environment, 16(1), pp. 77-86. [Korean literature]
  20. Lin, S. H. and Lin, C. M. (1993). Treatment of Textile Waste Effluents by Ozonation and Chemical Coagulation, Water Research, 27(12), pp. 1743-1748. https://doi.org/10.1016/0043-1354(93)90112-U
  21. Preethi, V., Kalyani, K. S. P., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N., and Vedaraman, N. (2009). Ozonation of Tannery Effluent for Removal of Cod and Color, Journal of Hazardous Materials, 166(1), pp. 150-154. https://doi.org/10.1016/j.jhazmat.2008.11.035
  22. Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A., and Ovelleiro, J. L. (1998). Treatment of a Wastewater Resulting from Dyes Manufacturing with Ozone and Chemical Coagulation, Water Research, 32(9), pp. 2721-2727. https://doi.org/10.1016/S0043-1354(98)00030-X
  23. Schrank, S. G., Jose, H. J., Moreira, R. F. P. M., and Schroder, H. F. (2004). Elucidation of the Behavior of Tannery Wastewater under Advanced Oxidation Conditions, Chemosphere, 56, pp. 411-423. https://doi.org/10.1016/j.chemosphere.2004.04.012
  24. Schrank, S. G., Jose, H. J., Moreira, R. F. P. M., and Schroder, H. F. (2005). Applicability of Fenton and $H_2O_2/UV$ Reactions in the Treatment of Tannery Wastewaters, Chemosphere, 60, pp. 644-655. https://doi.org/10.1016/j.chemosphere.2005.01.033
  25. Sevimli, M. F., Sarikaya, H. Z., and Yazgan, M. S. (2003). A New Approach to Determine the Practical Ozone dose for Color Removal from Textile Wastewater, Ozone: Science & Engineering, 25, pp. 137-143. https://doi.org/10.1080/713610668
  26. Shang, N. C. and Yu, Y. H. (2001). The Biotoxicity and Color Formation Results from Ozonation of Wastewaters Containing Phenol and Aniline, Journal of Environmental Science and Health, A, 36(3), pp. 383-393. https://doi.org/10.1081/ESE-100102929
  27. Snider, E. H. and Porter, J. J. (1974). Ozone Destruction of Selected Dyes in Wastewater, American Dyestuff Reporter, 63(8), pp. 36-48.
  28. Song, Z., Williams, C. J., and Edyvean, R. G. J. (2000). Sedimentation of Tannery Wastewater, Water Research, 34(7), pp. 2171-2176. https://doi.org/10.1016/S0043-1354(99)00358-9
  29. Staehelin, J. and Hoigné, J. (1985). Decomposition of Ozone in Water in the Presence of Organic Solutes acting as Promoters and Inhibitors of Radical Chain Reactions, Environmental Science & Technology, 19(1), pp. 206-1213.
  30. Takahashi, N. and Kumagai, T. (2008). Application of Ozonation to Dyeing Wastewater Treatment-case Study in Nishiwaki Treatment Plant, Ozone: Science & Engineering, 30, pp. 439-446. https://doi.org/10.1080/01919510802488011
  31. Tosik, R. and Wiktorowski, S. (2001). Color removal and improvement of biodegradability of wastewater from dyes production using ozone and hydrogen peroxide, Ozone: Science & Engineering, 23, pp. 295-302. https://doi.org/10.1080/01919510108962012