Browse > Article

Hydrolytic and Metabolic Capacities of Thermophilic Geobacillus Isolated from Litter Deposit of a Lakeshore  

Baek, Hyun-Ju (Department of Environmental Science, Kangwon National University)
Zo, Young-Gun (Department of Environmental Science, Kangwon National University)
Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.45, no.1, 2009 , pp. 32-40 More about this Journal
Abstract
To understand contribution of thermophilic microorganisms in decomposition of litter deposits on shore of lakes, we surveyed a lakeshore litter deposit for bacteria growing at $60^{\circ}C$. Ten thermophilic isolates were selected for in-depth characterization, based on their high capacity to degrade high molecular weight organic compounds. Based on phylogenetic analysis on their 16S rRNA gene sequences, all isolates were identified as Geobacillus. The optimal growth temperature and pH of the strains ranged $55{\sim}60^{\circ}C$ and 6.0${\sim}$8.0, respectively. Salinity was inhibitory to the growth of the isolates, showing marked decrease of growth rates at 3% salinity. Based on activities of hydrolytic enzymes and profiles of carbohydrate utilization (determined by API 50 CHB kit), three G. stearothermophilus strains showed patterns clearly distinctive from other isolates. Two G. kaustophilus strains also demonstrated distinctiveness in their metabolic pattern and ecological parameters. However, ecological and metabolic profiles of the other five isolates were more variable and showed some degree of digression from their phylogenetic classification. Therefore, it could be concluded that endospore-forming thermophilic bacteria in lakeshore litter deposits contribute to degradation of organic materials with diverse ecological niches while having successions similar to microbial flora in compost. We propose that the thermophilic isolates and/or their thermo-tolerant enzymes can be applied to industrial processes as appropriate mixtures.
Keywords
ecological niche; Geobacillus; hydrolytic activity; litter deposit; thermophile;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 이희선, 심재국. 1994. 삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구. 한국생태학회지 17, 171-183   과학기술학회마을   ScienceOn
2 Amend, J.P. and E.L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175-243   DOI   ScienceOn
3 Claus, D. and R.C.W. Berkeley. 1986. Genus Bacillus Cohn 1872, pp. 1105-1139. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Bergey's manual of systematic bacteriology, vol. 2. The Williams & Wilkins Co., Baltimore, Maryland, USA
4 Garrity, G.M., T.G. Lilburn, J.R. Cole, S.H. Harrison, J. Euzeby, and B.J. Tindall. 2007. Taxonomic Outline of the Bacteria and Archaea. In TOBA Release 7.7. Michigan State University Board of Trustees, East Lansing, MI, USA
5 Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704   DOI   ScienceOn
6 Haki, G.D. and S.K. Rakshit. 2003. Developments in industrially important thermostable enzymes: a review. Biores. Technol. 89, 17-34   DOI   ScienceOn
7 Rhee, S.K., C. Jeon, J.W. Bae, K. Kim, J. Song, J.J. Kim, S.G. Lee, H.I. Kim, S.P. Hong, Y.H. Choi, S.M. Kim, and M.H. Sung. 2002. Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6, 57-64   DOI   ScienceOn
8 Swofford, D.L. 1998. PAUP$^*$. Phylogenetic Analysis Using Parsimony ($^*$and Other Methods). 4.0 ed. Sinauer Associates, Sunderland, MA, USA
9 Takai, K. and K. Horikoshi. 2000. Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deepsea hydrothermal vent in Japan. Extremophiles 4, 9-17   DOI   PUBMED   ScienceOn
10 Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. 1994. Group 18: Endospore-forming Gram-positive rods and cocci, pp. 559-564. In J.G. Holt, K.H. Schleifer, J.G. Tully, J Ursing, M. Bryant, N.R. Krieg, J. Liston, J.W. Moulder, R.G.E. Murray, C.F. Niven, and N. Pfenning (eds.), Bergey's manual of systematic bacteriology, 9th ed. The Williams & Wilkins Co., Baltimore, Maryland, USA
11 Kwak, Y.S., T. Kobayashi, T. Akiba, K. Hirikioshi, and Y.B. Kim. 1994. Isolation and characterization of an extremely thermophilic sulfur-metabolizing bacterium from a deep-sea hydrothermal vent system. J. Microbiol. Biotechnol. 4, 36-40   과학기술학회마을   ScienceOn
12 Russell, R.J.M. and G.L. Taylor. 1995. Engineering thermostability: lessons from thermophilic proteins. Curr. Opin. Biotechnol. 6, 370-374   DOI   ScienceOn
13 Schaffer, C., W.L. Franck, A. Scheberl, P. Kosma, T.R. McDermott, and P. Messner. 2004. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int. J. Syst. Evol. Microbiol. 54, 2361-2368   DOI   ScienceOn
14 Wang, L., Y. Tang, S. Wang, R.L. Liu, M.Z. Liu, Y. Zhang, F.L. Liang, and L. Feng. 2006. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10, 347-356   DOI   ScienceOn
15 Nazina, T.N., T.P. Tourova, A.B. Poltaraus, E.V. Novikova, A.A. Grigoryan, A.E. Ivanova, A.M. Lysenko, V.V. Petrunyaka, G.A.Osipov, S.S. Belyaev, and M.V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51, 433-446Ā䈀傼Ɨ⨀Ā处돀邳Ɨ⨀砫Ɨ⨀㄄돐壧Ɨ⨀Ɨ⨀聰칀⁋䥓呉ㄮ㄰〳⽊乌⹊䅋伲〰㜳㐵ㄶ㌲ 赋䥓呉ㄮ㄰〳⽊乌⹊䅋伲〰㐰㠸㈳ 襗ྚ﷑ဿ锤ꪩꐥ䁇耪榩녰汇@ɍ呁聰칀ₙ鹿ȀȀ ؀Ā聰칀襗ྚ﷑ဿ聰칀锤ꪩꐥ䁇죪Ɨ⨀ Ā耪榩녰汇Ɨ⨀ Ȁ锤ꪩꐥ䁇࣫Ɨ⨀ 耪榩녰汇⣫Ɨ⨀ ꀰ슖⨀䣪Ɨ⨀ȀĀ넂돐飞Ɨ⨀僚Ɨ⨀蠰ʗ⨀칁ⵁ❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散 볬蒱뷬ꂜ냪떬谀ᔀ꫃䂨΀넾⾐릲㞢䍇侖邝垐浇€ͷ䵁칁ⵁ鿟㝁ȀऀἀЀĀ칁ⵁ꫃䂨΀넾칁ⵁ⾐릲㞢䍇ᣢƗ⨀ Ā侖邝垐浇㣢Ɨ⨀ᔀȀ⾐릲㞢䍇壢Ɨ⨀ 侖邝垐浇磢Ɨ⨀ᔀ슖⨀飡Ɨ⨀Ȁ⾐릲㞢䍇?Ɨ⨀ Ā侖邝垐浇Ɨ⨀ᔀȀ❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散볬蒱뷬ꂜ냪떬谀❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散볬蒱뷬ꂜ냪떬谀❄潥猠瑨攠䥮瑥牮整⁉湣牥慳攬⁄散볬蒱뷬ꂜ냪떬谀㄀돐ᣠƗ⨀士Ɨ⨀处돀邳Ɨ⨀砫㣧Ɨ⨀돀偠—⨀僚Ɨ⨀   DOI   PUBMED
16 Stetter, K., A. Segerer, W. Zillig, G. Huber, G. Fiala, R. Huber, and H. K$\ddot{o}$nig. 1986. Extremely thermophilic sulfur-metabolizing archaebacteria. Syst. Appl. Microbiol. 7, 393-397   DOI
17 Ryckeboer, J., J. Mergaert, K. Vaes, S. Klammer, D.D. Clercq, J. Coosemans, H. Insam, and J. Swings. 2003. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53, 349-410   ScienceOn
18 Hedderich, R., S.P.J. Albracht, D. Linder, J. Koch, and R.K. Thauer. 1992. Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum The mvhb gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett. 298, 65-68   DOI   ScienceOn
19 Ladenstein, R. and G. Antranikian. 1998. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv. Biochem. Eng. Biotechnol. 61, 37-85   DOI   PUBMED   ScienceOn
20 Adams, M.W.W., F.B. Perler, and R.M. Kelly. 1995. Extremozymes: expanding the limits of biocatalysis. Nat. Biotechnol. 13, 662-668   DOI
21 Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261-5267   DOI   ScienceOn
22 이정현. 2006. 해양유래 초고온성 고세균 Thermococcus sp. NA1 유전체 해독과 활용. 유전체 소식 6, 29-34   과학기술학회마을
23 Madigan, M.T. and J.M. Martino. 2006. Brock Biology of Microorganisms, 11th ed, p. 136. Upper saddle river: Pearson/Prentice Hall, NJ, USA
24 Manachini, P.L., D. Mora, G. Nicastro, C. Parini, E. Stackebrandt, R. Pukall, and M.G. Fortina. 2000. Bacillus thermodenitrificans sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 50, 1331-1337   DOI   PUBMED   ScienceOn
25 Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, and J.M. Tiedje. 2009. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141-145   DOI   ScienceOn
26 Fortina, M.G., D. Mora, P. Schumann, C. Parini, P.L. Manachini, and E. Stackebrandt. 2001. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int. J. Syst. Evol. Microbiol. 51, 2063-2071   DOI   PUBMED   ScienceOn