• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.029 seconds

Analysis of the Relation Between Machining Accuracy of Internal Gear and Noise in Reduction Gears (감속기 내부 기어의 가공정밀도와 구동간 소음의 연관특성에 관한 연구)

  • Park, Sung-Pil;Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.537-543
    • /
    • 2012
  • In this study, we experimentally investigate a noise mechanism related to the machining accuracy of the reducer in the driving state. We fabricate a planetary reducer and four types of gears for use in the planetary reducer. We use signal analysis to determine the noise and vibration of the reducer at different motor speeds; the motor speed is increased from 0 rpm to the maximum speed in a stepwise manner. In addition, we obtain the sound level by using a sound level meter. The machining accuracy of gears is evaluated by public organizations, Korea Testing Laboratory (KTL), on the basis of the Japanese Industrial Standard (JIS). We analyze and compare the results with the noise and vibration of the reducer.

Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment (이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현)

  • Ha, Hong-Gon;Lee, Chang-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Recently, the application of the linear machine for industrial field is remarkably increased, especially for the gantry machine, machine tool system and CNC. However a linear meter remains the vibrational characteristic itself therefore, In these application fields, high position control performance is essentially required in both the steady and the transient states. In this paper, the design method for a position control is proposed by using the two-degree-of freedom PID controller. This method has great features for the linear machine drives such as no over-shoot phenomena and single gain tuning strategy. By comparison with conventional PID controller, the improvement of performance of a linear motor control system using two degrees of freedom controller are discussed. Through the simulation results, the usefulness of the proposed algorithm is proved. With the simulation results, it was made clear that the introduction of two degrees of freedom controller designed by the proposed method not only improves the over shoot and starting characteristic of response but also removes the undesirable characteristic variation.

  • PDF

Xenomai-based Embedded Controller for High-Precision, Synchronized Motion Applications (고정밀 동기 모션 제어 응용을 위한 Xenomai 기반 임베디드 제어기)

  • Kim, Chaerin;Kim, Ikhwan;Kim, Taehyoun
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.173-182
    • /
    • 2015
  • Motion control systems are widely deployed in various industrial automation processes. The motion controller, which is a key element of motion control systems, has stringent real-time constraints. The controller must provide a short and deterministic control message transmission cycle, and minimize the actuation deviation among motor drives. To meet these requirements, hardware-based proprietary controllers have been prevalent. However, since it is becoming difficult for such an approach to meet increasing needs of system interoperability and scalability, nowadays, software-based universal motion controllers are regarded as their substitutes. Recently, embedded motion controller solutions are gaining attention due to low cost and relatively high performance. In this paper, we designed and implemented an embedded motion controller on an ARM-based evaluation board by using Xenomai real-time kernel and other open source software components. We also measured and analyzed the performance of our embedded controller under a realistic test-bed environment. The experimental results show that our embedded motion controller can provide relatively deterministic performance with synchronized control of three motor axis at 2 ms control cycle.

Fault Diagnosis of Induction Motor by Fusion Algorithm based on PCA and IDA (PCA와 LDA에 기반을 둔 융합알고리즘에 의한 유도전동기의 고장진단)

  • Jeon, Byeong-Seok;Lee, Dae-Jong;Lee, Sang-Hyuk;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • In this paper, we propose a diagnosis algorithm using fusion wかd based on PCA and LDA to detect fault states of the induction motor that is applied to various industrial fields. After yielding a feature vector from the current value measured by an experiment using PCA and LDA, training data is made to produce each matching value. In a diagnostic step, two matching values yielded by PCA and LDA are fused by probability model and finally verified. Since the proposed diagnosis algorithm takes only merits of PCA and LDA it shows excellent results under noisy environments. The simulation results to verify the usability of the proposed algorithm showed better performance than the case just using conventional PCA or LDA.

Switch Open Fault Diagnosis of Inverter Using Features of dq Currents (dq 전류의 특징을 이용한 인버터의 스위치 개방 고장진단)

  • Kwak, Nae-Joung;Hwang, Jae-Ho;Hong, Won-Pyo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • Faults of motor drive systems to be used for various industrial applications can cause serious problems. In this paper, a method to diagnose switch open fault of a voltage-fed PWM inverter is proposed. The proposed method normalizes dq current and fault-detection and first classification are performed by mean values of dq phase currents, second classification is performed by features such as the relation of dq phase currents, the ranges of those, the positions of those according to the results, and fault switch is diagnosed with the results. The proposed method performs the simulation for diagnosis of inverter switch open faults with MATLAB and identifies the feasibility of the proposed method. Because the proposed method is implemented by simple algorithms, the proposed algorithm can be embedded in general induction motor drive systems and be used.

Analysis of Motor Winding impact by inverter Switching Voltage Waveforms (인버터 스위칭전압 파형에 의한 전동기 권선 영향 해석)

  • 김종겸
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.94-101
    • /
    • 1999
  • In this paper the problems associated with the switching surge of PWM inverter devices were analysed. As the application of ASD for efficient speed control of AC rmtors is increased, so is the rrntor and ASD-related failure increased. In the industrial rmtor awlications, the introduction of PWM drives can sometmes cause insulation breakdown between the phase windings due to high transient voltage peak. The motor cable length combined with the high switching frequency becomes more sensitive issue for proper drive operation. Effects of the cable length and high switching frequency influence both on rmtor and inverter. When the insulation level of rmtor winding is low, the failure probability caused by high peak voltage and fast voltage rise times(dv/dt) is high. Voltage refloctions are simulated far rmtor capacities, ASD and rise times and are presented graphically. The filtering techniques are discussed to reduce the rmtor terminal overvoltage and dv/dt in inverter fed AC rrntor drive systems. We confirmed that the lower motar capacity and rmtar insulation level, the shorter switching time and cable length and the higrer the probability of insulation breakdown .kdown .

  • PDF

Shallow Junction Device Formation and the Design of Boron Diffusion Simulator (박막 소자 개발과 보론 확산 시뮬레이터 설계)

  • Han, Myoung Seok;Park, Sung Jong;Kim, Jae Young
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.249-264
    • /
    • 2008
  • In this dissertation, shallow $p^+-n$ junctions were formed by ion implantation and dual-step annealing processes and a new simulator is designed to model boron diffusion in silicon. This simulator predicts the boron distribution after ion implantation and annealing. The dopant implantation was performed into the crystalline substrates using $BF_2$ ions. The annealing was performed with a RTA(Rapid Thermal Annealing) and a FA(Furnace Annealing) process. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of sheet resistance and the simulator reproduced experimental data successfully. Therefore, proposed diffusion simulator and FA+RTA annealing method was able to applied to shallow junction formation for thermal budget. process.

Maximum Torque per Ampere Control of Interior Permanent Magnet Synchronous Motor based on Signal Injection (실시간 신호 주입을 이용한 매입형 영구자석 동기 전동기의 단위 전류당 최대 토크 제어)

  • Kim, Sung-Min;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.142-149
    • /
    • 2010
  • Interior Permanent Magnet Synchronous Motor(IPMSM) have gained an increasing popularity in recent years for a variety of industrial applications, because of their high power density, high efficiency and possibility of flux weakening operation. Because the efficiency of IPMSM is one of the important performance characteristic, the Maximum Torque Per Ampere(MTPA) operating method has been indispensible. In theory, MTPA operating point can be calculated using the exact values of the machine parameters. However, the values of the IPMSM parameters are known to vary widely according to the operating condition. Therefore, to operate the IPMSM in the MTPA operating point, the machine parameters should be estimated in real-time. In this paper, the new MTPA operating method based on the signal injection is presented. By injecting the high frequency current signal, the MTPA operating criteria can be calculated by measuring the input power to IPMSM. The proposed method can find the MTPA operating point with simple signal processing regardless of the parameter variation.

Design of 1 MW High-temperature Superconducting Motor with Water-cooled Armature (수냉식 전기자로 구성된 1 MW 고온초전도 동기모터의 설계)

  • Baik, S.K.;Lee, J.D.;Kim, S.H.;Lee, E.Y.;Sohn, M.H.;Kwon, Y.K.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Lee, J.Y.;Hong, J.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1258-1260
    • /
    • 2005
  • Superconducting synchronous motors and generators have the field coil composed of superconductor with almost zero resistance at superconducting state. Therefore, co or loss at the conventional field coil is eliminated and the superconducting machine gets higher efficiency. The armature coil of the superconducting machine is composed of cower wire and supported by non-magnetic material such as FRP(Fiber Reinforced Plastic). Although a fully-superconducting machine with superconducting armature coil has been researched, it was not developed toward industrial application because of AC transporting loss and difficulty in construction of the cooling structure and so on. This paper contains the design procedure of a 1 MW superconducting synchronous motor using high-temperature superconductor only for the field coil. Especially, the armature coil is designed by water-cooling in order to dissipate Joule heat easily. Moreover, 3-dimensional electromagnetic design is conducted to get a proper design result and reduce design errors from 2-dimensional approach.

  • PDF

Power System Optimization for Electric Hybrid Unmanned Drone (전동 하이브리드 무인 드론의 동력 계통 최적화)

  • Park, Jung-Hwan;Lyu, Hee-Gyeong;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.300-308
    • /
    • 2019
  • For drones to be used for industrial or agricultural applications, it is necessary to increase the payload and endurance. Currently, the payload and endurance are limited by the battery technology for electric powered drones. In addition, charging or replacing the batteries may not be a practical solution at the field that requires near continuous operation. In this paper, a procedure to optimize the power system of an electric hybrid drone that consists of an internal combustion engine, a generator, a battery, and electric motors is presented. The example drone for crop dusting is sized for easy transportation with a maximum takeoff weight of 200 kg. The two main rotors that are mechanically connected to the internal combustion engine provides most of the lift. The drone is controled by four electric motors that are driven by the generator. By analyzing the flow of the energy, a methodology to select the optimum propeller and motor among the commercially available models is described. Then, a procedure of finding the optimum operational condition along with the proper gear reduction ratios for the internal combustion engine based on the test data is presented.