DOI QR코드

DOI QR Code

Fault Diagnosis of Induction Motor by Fusion Algorithm based on PCA and IDA

PCA와 LDA에 기반을 둔 융합알고리즘에 의한 유도전동기의 고장진단

  • Published : 2005.03.01

Abstract

In this paper, we propose a diagnosis algorithm using fusion wかd based on PCA and LDA to detect fault states of the induction motor that is applied to various industrial fields. After yielding a feature vector from the current value measured by an experiment using PCA and LDA, training data is made to produce each matching value. In a diagnostic step, two matching values yielded by PCA and LDA are fused by probability model and finally verified. Since the proposed diagnosis algorithm takes only merits of PCA and LDA it shows excellent results under noisy environments. The simulation results to verify the usability of the proposed algorithm showed better performance than the case just using conventional PCA or LDA.

본 논문에서는 산업전반에 걸쳐 널리 사용되는 유도전동기의 고장상태를 검출하기 위해 PCA와 LDA에 기반을 둔 융합모델을 이용한 진단 알고리즘을 제안하고자 한다. 실험에 의해 측정된 전류 값을 PCA와 LDA을 이용하여 특징벡터를 산출한 후 검증데이터를 이용하여 각각의 매칭 값을 산출한다. 진단단계는 PCA와 LDA에 의해 각각 산출된 두 개의 매칭 값을 확률모델에 의해 융합한 후 최종적으로 검증하는 구조로 되어있다. 제안된 진단 알고리즘의 경우 PCA와 LDA의 장점만을 부각시킴으로써 노이즈가 존재하는 환경하에서도 우수한 성능을 보인다. 제안된 방법의 타당성을 보이기 위해 노이즈가 있는 다양한 조건하에서 실험한 결과 기존의 PCA또는 LDA만을 이용한 경우보다 우수한 결과를 나타냈다.

Keywords

References

  1. Ye Zhongming and Wu Bin,,'A review on induction motor online fault diagnosis', PIEMC 2000, Vol.3, pp.1353-1358, 2000
  2. M.E.H. Benbouzid and G.B. Kliman, 'What stator current processing-based technique to use for induction motor rotor faults diagnosis?', IEEE Transactions on Energy Conversion, Vol.18, Issue 2, pp.238-244, 2003 https://doi.org/10.1109/TEC.2003.811741
  3. W.T. Thomson and M. Fenger, 'Current signature analysis to detect induction motor faults', IEEE Industry Applications Magazine, Vol.7, Issue 4, pp.26-34, 2001
  4. H. Nejjari, M.E.H. Benbouzid, 'Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach', IEEE Transactions on Industry Applications, Vol.36, Issue 3, pp.730-735, 2000 https://doi.org/10.1109/28.845047
  5. A. Bellini, F. Filippetti, G. Franceschini, C. Tassoni, and G.B. Kliman, 'Quantitative evaluation of induction motor broken bars by means of electrical signature analysis', IEEE Transactions on Industry Applications, Vol.37, Issue 5, pp.1248-1255, 2001 https://doi.org/10.1109/28.952499
  6. Kyusung Kim, A.G. Parlos, and R. Mohan Bharadwaj, 'Sensorless fault diagnosis of induction motors', IEEE Transactions on Industrial Electronics, Vol.50 Issue 5, pp. 1038-1051, 2003 https://doi.org/10.1109/TIE.2003.817693
  7. F. Zidani, M. El Hachemi Benbouzid, D. Diallo, and M.S. Nait-Said, 'Induction motor stator faults diagnosis by a current concordia pattern-based fuzzy decision system', IEEE Transactions on Energy Conversion, Vol.18, Issue 4, pp.469-475, 2003 https://doi.org/10.1109/TEC.2003.815832
  8. M. Turk and A. Pentland, 'Face recognition using eigenfaces', Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.586-591, 1991
  9. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegmaqn, 'Eigenfaces vs. Fisherfaces : recognition using class specific Linear Projection', IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), pp.711-720, 1997 https://doi.org/10.1109/34.598228
  10. Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification, John Wiley & Sons, 2nd ed., 2002
  11. 전병석, 이상혁, 박장환, 유정웅, 전명근, '선형판별분석기법을 이용한 유도전동기의 고장진단', 한국조명전기설비학회, 제18권 제4호, pp.104-111, 2004
  12. 손건태, 전산통계개론, 제3판, 자유아카데미, 2003