• Title/Summary/Keyword: Inductively coupled plasma-atomic emission spectroscopy

Search Result 58, Processing Time 0.034 seconds

Acid Rock Drainage Generation Capacity of Tertiary Mudstone in Pohang Basin (포항분지 제3기 이암의 산성배수 발생 능력)

  • Baek, In-Woo;Kim, Jae-Gon;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.23-33
    • /
    • 2020
  • This study determines the basic properties and acid rock drainage generation capacity of Pohang tertiary mudstone through laboratory experiments. According to X-ray fluorescence (XRF) analysis results, the mudstone of this area mostly comprised of SiO2 with a proportion of approximately 60%, followed in order by Al2O3 and Fe2O3. As such, it is clear that there is an abundance of aluminosilicates with a high probability of generating acid rock drainage. The XRD analysis showed that the mudstone contains pyrite (FeS2), it is highly likely to generate acid rock drainage, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis results showed that the mudstone samples contained a high amount of Fe2+ ions. As a result of anion analysis measured by ion chromatography (IC), all mudstone samples were measured to have high SO2-4 concentrations. According to elemental analysis, the total sulfur (S) content was high, which in turn indicates a high risk of acid rock drainage generation reflected by a maximum potential acidity (MPA) higher than 1%. All in all, although there were slight deviations between the tertiary mudstone samples, overall, the samples exhibited high acid rock drainage generation capacities.

Comparative study on the physicochemical properties and cytocompatibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute (미세다공성 Biphasic calcium phosphate ceramics의 골이식 대체재로서의 기본특성에 대한 비교연구)

  • Park, Kwang-Bum;Park, Jin-Woo;Ahn, Hyun-Uk;Yang, Dong-Jun;Choi, Seok-Kyu;Jang, II-Sung;Yeo, Shin-Il;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.797-808
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the physicochemical properties and cytocompatibility of microporous, spherical biphasic calcium phosphate(BCP) ceramics with a 60/40 $hydroxyapatite/{\beta}$ -tricalcium phosphate weight ratio for application as a bone graft substitute. Materials and Methods : Microporous, spherical BCP granules(MGSB) were prepared and their basic characteristics were compared with commercially available BCP(MBCP; Biomatlante, France) and deproteinized bovine bone mineral(Bio-Oss; GBistlich-Pharma, Switzerland, BBP; Oscotec. Korea), Their physicochemical properties were evaluated by scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometer, and Brunauer-Emmett-Teller method. Cell viability and proliferation of MC3T3-El cells on different graft materials were evaluated. Results : MGSB granules showed a chemical composition and crystallinity similar with those in MBCP, they showed surface structure characteristic of three dimensionally, well-interconnected micropores. The results of MTT assay showed increases in cell viablity with increasing incubation times. At 4d of incubation, MGSB, MBCP and BBP showed similar values in optical density, but Bio-Oss exhibited significantly lower optical density compared to other bone substitutes(p <0,05). MGSB showed significantly greater cell number compared to other bone substitutes at 3, 5, and 7d of incubation(p <0,05), which were similar with those in polystyrene culture plates. Conclusion: These results indicated the suitable physicochemical properties of MGSB granules for application as an effective bone graft substitute. which provided compatible environment for osteoblast cell growth. However, further detailed studies are needed to confirm its biological effects on bone formation in vivo.

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites (제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환)

  • You, Su Jin;Baek, In Gu;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.435-441
    • /
    • 2012
  • The direct conversion of cellulose into polyols in $H_2$ was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and ${\beta}$. For comparison, Pt catalysts supported on ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, and $SiO_2$ were also tested. The physical properties of the catalysts were probed with $N_2$ physisorption. The surface acidity was measured with temperature programmed desorption of ammonia ($NH_3$-TPD). The Pt content was quantified with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of $H^+$ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.

Analysis of Mineral and Volatile Flavor Compounds in Pimpinella brachycarpa N. by ICP-AES and SDE, HS-SPME-GC/MS (ICP-AES와 SDE, HS-SPME-GC/MS를 이용한 참나물의 무기성분과 향기성분)

  • Chang, Kyung-Mi;Chung, Mi-Sook;Kim, Mi-Kyung;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • Mineral and volatile flavor compounds of Pimpinella brochycarpa N., a perennial Korean medicinal plant of the Umbelliferae family, were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and simultaneous steam distillation extract (SDE)-gas chromatography mass spectrometry (GC/MS), head space solid phase micro-extraction (HS-SPME)-GC/MS. Mineral contents of the stalks and leaves were compared and the flavor patterns of the fresh and the shady air-dried samples were obtained by the electronic nose (EN) with 6 metal oxide sensors. Principal component analysis (PCA) was carried out using the data obtained from EN. The 1st principal values of the fresh samples have + values and the shady air-dried have - values. The essential oil extracted from the fresh and the shady air-dried by SDE method contain 58 and 31 flavor compounds. When HS-SPME method with CAR/PDMS fiber and PDMS fiber were used, 34 and 21 flavor compounds. The principal volatile components of Pimpinella brachycarpa N. were ${\alpha}$-selinene, germacrene D, and myrcene.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

A Study on Cation Extraction and Impurity Separation in Slag (슬래그 내 양이온 추출 및 불순물 분리 연구)

  • Lee, Ye Hwan;Kang, Hyerin;Jang, Younghee;Lee, Si-Jin;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.311-315
    • /
    • 2019
  • The cation extraction and impurity separation were studied in order to investigate the recyclability of a slag produced from the steel refinery industry. Two types of slag (Slag-A, B) were collected and characterized in this study. The initial characterization by X-ray diffraction (XRD) and X-ray fluorescence (XRF) confirmed the existence of various kinds of ions in the slag such as Ca2+ (30 ~ 40%), Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), and Mg2+ (3 ~ 5%). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis on the extracted slag using 2 M HCl as a solvent indicated that a higher concentration of Ca2+ was extracted as the S/L ratio was increased. The Ca2+ extraction concentration were found to be 8,940 mg L-1 (Slag-A) and 10,690 (Slag-B) mg L-1 when the S/L ratio for Ca2+ extraction was 0.1. However, the extract was strongly acidic ( < pH 1) at 0.1 S/L. Also the other ions (impurities) were extracted simultaneously in addition to Ca2+. To increase the purity of Ca2+ in order to transform the slag to a high value resource, a pH-swing was conducted. The impurities tended to precipitate at higher rate as the pH was increased. Notably, the Ca2+ rapidly precipitated above a certain pH and at a pH of 10.5, while the selectivity of Ca2+ was over 99%. It is expected that the aqueous solution in which high contents of Ca2+ was selectively dissolved in this study would be suitable for the carbonation process for reducing CO2 and for the production of calcium carbonate.

FILLER LEACHING FROM NANOFILLER-CONTAINED COMPOSITE RESIN IN VARIOUS MEDIA (수종의 저장 용액에서 나노필러를 함유한 복합레진의 필러의 용출량에 관한 연구)

  • Yang, Kyu-Ho;Heo, Su-Kyung;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • The objective of this study was to measure the leaching of filler (Si, Ba) from nanofiller-contained composites (Palfique Estelite $sigma^{{R}}$ (Tokuyama Dental Corp., Tokyo, Japan), $Z-350^{{R}}$ (3M ESPE, USA), Ceram X duo $E3^{{R}}$, $D3^{{R}}$ (Dentsply, Konstanz, Germany)) under different conditions. The samples used for the study of leachable components were made by insertion of the material into a circular mold, 10 mm in diameter and 3.0 mm high. Each specimen was placed in a disposable polystyrene vial containing 5 mL of distilled water, artificial saliva or 0.1N NaOH and kept in an oven at $37^{\circ}C$. ; water and artificial saliva - 150 days, 0.1N NaOH - 15days. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the amount of Si and Ba in the test solutions. 1. Filler leaching was significantly great in 0.1N NaOH among all samples(p<.0.001). 2. When samples were stored in the distilled water, Estelite showed the lowest amount of Si leaching. When samples were stored in the artificial saliva, Z-350 showed the lowest amount of Si leaching. 3. There were significant differences in filler leaching between 3 storage medias and composite resins(p<.0.001). 4. Si and Ba leaching occurred in greater proportion when samples were stored in the artificial saliva than distilled water. 5. There were significant interactions in monthly filler leaching between leaching in artificial saliva and in distilled water, as well as the interaction between storage medium and filler(p<.0001). These results indicate that a continuous filler leaching of nanofiller-contained composite resins was in storing aqueous solutions under over time.

  • PDF