FILLER LEACHING FROM NANOFILLER-CONTAINED COMPOSITE RESIN IN VARIOUS MEDIA

수종의 저장 용액에서 나노필러를 함유한 복합레진의 필러의 용출량에 관한 연구

  • Yang, Kyu-Ho (Department of Pediatric Dentistry, Chonnam National University School of Dentistry, Dental Research Institute and Second stage of BK21) ;
  • Heo, Su-Kyung (Department of Pediatric Dentistry, Chonnam National University School of Dentistry, Dental Research Institute and Second stage of BK21) ;
  • Choi, Nam-Ki (Department of Pediatric Dentistry, Chonnam National University School of Dentistry, Dental Research Institute and Second stage of BK21) ;
  • Kim, Seon-Mi (Department of Pediatric Dentistry, Chonnam National University School of Dentistry, Dental Research Institute and Second stage of BK21)
  • 양규호 (전남대학교 치의학전문대학원 소아치과학교실 및 치의학연구소 및 2단계 BK21) ;
  • 허수경 (전남대학교 치의학전문대학원 소아치과학교실 및 치의학연구소 및 2단계 BK21) ;
  • 최남기 (전남대학교 치의학전문대학원 소아치과학교실 및 치의학연구소 및 2단계 BK21) ;
  • 김선미 (전남대학교 치의학전문대학원 소아치과학교실 및 치의학연구소 및 2단계 BK21)
  • Published : 2009.02.27

Abstract

The objective of this study was to measure the leaching of filler (Si, Ba) from nanofiller-contained composites (Palfique Estelite $sigma^{{R}}$ (Tokuyama Dental Corp., Tokyo, Japan), $Z-350^{{R}}$ (3M ESPE, USA), Ceram X duo $E3^{{R}}$, $D3^{{R}}$ (Dentsply, Konstanz, Germany)) under different conditions. The samples used for the study of leachable components were made by insertion of the material into a circular mold, 10 mm in diameter and 3.0 mm high. Each specimen was placed in a disposable polystyrene vial containing 5 mL of distilled water, artificial saliva or 0.1N NaOH and kept in an oven at $37^{\circ}C$. ; water and artificial saliva - 150 days, 0.1N NaOH - 15days. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the amount of Si and Ba in the test solutions. 1. Filler leaching was significantly great in 0.1N NaOH among all samples(p<.0.001). 2. When samples were stored in the distilled water, Estelite showed the lowest amount of Si leaching. When samples were stored in the artificial saliva, Z-350 showed the lowest amount of Si leaching. 3. There were significant differences in filler leaching between 3 storage medias and composite resins(p<.0.001). 4. Si and Ba leaching occurred in greater proportion when samples were stored in the artificial saliva than distilled water. 5. There were significant interactions in monthly filler leaching between leaching in artificial saliva and in distilled water, as well as the interaction between storage medium and filler(p<.0001). These results indicate that a continuous filler leaching of nanofiller-contained composite resins was in storing aqueous solutions under over time.

본 연구는 최근 시판되고 있는 4종의 복합레진 Palfique Estelite $sigma^{{R}}$ (Tokuyama Dental Corp., Tokyo, Japan), $Z-350^{{R}}$ (3M ESPE, USA), Ceram X duo $E3^{{R}}$, Ceram X duo $D3^{{R}}$ (Dentsply, Konstanz, Germany)이 3가지 액체 환경에 노출될 때 시간에 따라 필러의 용출 양상이 변하는지 알아보고 이를 비교 분석하였다. 필러의 용출량을 평가하기 위해 내경 10mm, 두께 3mm인 테프론 몰드를 이용하여 시편을 제작하였다. 각각의 시편을 5ml의 0.1N NaOH 용액, 증류수, 인공타액이 담긴 폴리에틸렌 용기에 담구고 $37{\circ}C$ 오븐에서 보관하였다. Si, Ba의 용출량을 알아보기 위해 ICP-AE 기기를 이용하여 0.1N NaOH 용액에 담군 시편은 2주 후에, 증류수와 인공타액에 담군 시편은 1개월 간격으로 5회에 걸쳐 정량 분석하여 다음과 같은 결과를 얻었다. 1. 0.1N NaOH에서 필러의 용출량은 모든 시편에 대해서 유의하게 높았다 (p<.0.001). 2. 증류수에 저장하였을 때, Si 용출량은 Z-350가 가장 적고, 인공 타액에 저장하였을 때, Si 용출량은 Estelite에서 가장적었다. 3. 저장용액에 따른 원소의 용출량에서 모두 유의한 평균차이를 보였다(p<.0.001) 4. 인공타액에 저장된 시편이 증류수에 저장된 시편보다 시간이 증가할수록 Ba와 Si의 용출량이 더 많았다. 5. 저장기간에 따른 필러의 용출량은 저장 용액 간, 재료 간에 유의한 상관관계를 보였다(p<.0001). 이상을 통해 나노필러를 함유한 복합레진이 수분환경에 노출되었을 때 필러 입자들의 지속적인 용출이 일어남을 확인할 수 있었다.

Keywords

References

  1. Proffit WR, Fields HW, Nixon WL : Occlusal forces in normal- and long-face adults. J Dent Res, 62:566-570, 1983. https://doi.org/10.1177/00220345830620051201
  2. Fields HW, Proffit WR, Case JC, et al. : Variables affecting measurements of vertical occlusal force. J Dent Res, 65:135-138, 1986. https://doi.org/10.1177/00220345860650020901
  3. Leinfelder KF, Sluder TB, Sockwell CL, et al.: Clinical evaluation of composite resins as anterior and posterior restorative materials. J Prosthet Dent, 33:407-416, 1975. https://doi.org/10.1016/S0022-3913(75)80037-0
  4. 양규호, 정희경, 최남기 등 : 광중합형 복합레진의 화학적 분해와 마모에 관한 연구. 대한소아치과학회, 34:273-284, 2007.
  5. Mjor IA : Placement and replacement of restorations. Oper Dent,6:49-54, 1981.
  6. Qvist V, Thylstrup A, Mj¨or IA : Restorative treatment pattern and longevity of resin restorations in Denmark. Acta Odontol Scand, 44:351-356, 1986. https://doi.org/10.3109/00016358609094345
  7. Ferracane JL : In vivo evaluation of composite resins. Structure-property relationships. Deve lopment of assessment criteria. Trans Acad Dent Mater, 2:6-35, 1989.
  8. Oysaed H, Ruyter IE : Composites for use in posterior teeth: mechanical properties tested under dry and wet conditions. J Biomed Mater Res, 20:261- 271, 1986. https://doi.org/10.1002/jbm.820200214
  9. Calais JG, S¨oderholm KJ : Influence of filler type and water exposure on flexural strength of experimental composite resins. J Dent Res, 67:836-840, 1988. https://doi.org/10.1177/00220345880670050801
  10. Mohsen NM, Craig RG : Hydrolytic stability of silanated zirconia-silica-urethane dimethacylate composites. J Oral Rehabil, 22:213-220, 1995. https://doi.org/10.1111/j.1365-2842.1995.tb01566.x
  11. Soderholm KJ : Degradation of glass filler in experimental composites. J Dent Res, 60:1867-1875, 1981. https://doi.org/10.1177/00220345810600110701
  12. de Gee AJ, Pallav P, Werner A, et al : Annealing as a mechanism of increasing wear resistance of composites. Dent Mater, 6:266-70, 1990. https://doi.org/10.1016/S0109-5641(05)80008-9
  13. Soderholm KJ : Leaking of fillers in dental composites. J Dent Res, 62;126-30, 1983. https://doi.org/10.1177/00220345830620020801
  14. Ferracane JL : Elution of leachable components from composites. J Oral Rehabil, 21:441-452, 1994. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x
  15. Peumans M, Van Meerbeek B, Lambrechts P, et al. : The influence of direct composite additions for the correction of tooth form and/or position on periodontal health. A retrospective study. J Periodontol, 69:422-427, 1998. https://doi.org/10.1902/jop.1998.69.4.422
  16. Soderholm KJ, Zigan M, Ragan M, et al : Hydrolytic degradation of dental composites. J Dent Res, 63:1248-1254, 1984. https://doi.org/10.1177/00220345840630101701
  17. Ferracane JL, Berge HX : Fracture toughness of experimental dental composites aged in ethanol. J Dent Res, 74:1418-1423, 1995. https://doi.org/10.1177/00220345950740071501
  18. McKinney JE, Wu W : Chemical softening and wear of dental composites. J Dent Res, 64:1326-1331, 1985. https://doi.org/10.1177/00220345850640111601
  19. Krishna VK, Yamuna V : Aging studies of a radiopaque light-cured dental composite in food stimulating liquids. J Appl Polym Sci, 69:1153-8, 1998. https://doi.org/10.1002/(SICI)1097-4628(19980808)69:6<1153::AID-APP12>3.0.CO;2-U
  20. Sarkar NK, Karmaker A, Prasad A et al : Simulation of vivo degradation of dental composites. J Mater Sci Lett, :18:1749-52, 1999. https://doi.org/10.1023/A:1006666808669
  21. Sarkar NK : Internal corrosion in dental composite wear. J Biomed Mater Res, 53:371-380, 2000. https://doi.org/10.1002/1097-4636(2000)53:4<371::AID-JBM11>3.0.CO;2-N
  22. Soderholm KJ, Mukherjee R, Longmate J : Filler leachability of composites stored in distilled water or artificial saliva. J Dent Res, 75:1692-1699, 1996. https://doi.org/10.1177/00220345960750091201
  23. Darvell BW : The development of an artificial saliva for in vitro amalgam corrosion studies. J Oral Rehabil, 5:41-49, 1978. https://doi.org/10.1111/j.1365-2842.1978.tb00390.x
  24. Wu W, Cobb EN : A silver staining technique for investigating wear of restorative dental composites. J Biomed Mater res, 15:343-348, 1981. https://doi.org/10.1002/jbm.820150306
  25. Bapna MS, Mueller1 HJ : Relative solubilities of hybrid ionomer and compomers by acid impingement. J Oral Rehabil 26:786-790, 1999. https://doi.org/10.1046/j.1365-2842.1999.00452.x
  26. Kalachandra S : Influence of fillers on the water sorption of composites. Dent Mater 5:283-288, 1989. https://doi.org/10.1016/0109-5641(89)90077-8
  27. Kalachandra S, Wilson TW : Water sorption and mechanical properties of light-cured proprietary composite restorative materials. Biomaterials, 13:105-109, 1992. https://doi.org/10.1016/0142-9612(92)90004-8
  28. Wu W, Toth EE, Moffa JF, et al. : Subsurface damage layer of in vivo worn dental composite restorations. J Dent Res, 63:675-680, 1984. https://doi.org/10.1177/00220345840630051401
  29. Mair LH : Staining of in vivo subsurface degradation in dental composites with silver nitrate. J Dent Tes, 70:215-220, 1991. https://doi.org/10.1177/00220345910700031201
  30. Larsen IB, Munksgaard EC : Effect of human saliva on surface degradation of composite resins. Scand J Dent Res, 99:254-261, 1991.
  31. Munksgaard EC, Freund M : Enzymatic hydrolysis of (di) methacrylates and their polymers. Scand J Dent Res, 98:261-267,1990.
  32. Braden M : Water absorption characteristics of den tal microfine composite filling materials. II Experimental materials. Biomaterials, 5:373-375, 1984. https://doi.org/10.1016/0142-9612(84)90039-5
  33. Ortengren U, Wellendorf H, Karlsson S, et al. : Sorption, solubility and identification of substances released from composite materials in an aqueous environment. J Oral Rehab (Accepted for publication), 2000.
  34. Roulet JF : Degradation of dental polymers. Swizerland:Krager, 161-214, 1987.
  35. Zui S, Arai K : A study of visible light-cured composite resins-mechanical properties. J Soc Dent Mat Dev, 5:601-615, 1986.
  36. Pilliar RM, Vowles R, Williams DF : The effect of enviornmental aging on the fracture toughness of dental composites. J Dent Res, 66:722-726, 1987. https://doi.org/10.1177/00220345870660030301
  37. Ferracane JL, Hopkin JK, Condon JR : Properties of heat-treated composites after aging in water. Dent Mater, 11:354-358, 1995. https://doi.org/10.1016/0109-5641(95)80034-4
  38. de Gee AJ, Wendt SL, Werner A, et al. : Influence of enzymes and plaque acids on in vitro wear of dental composites. Biomaterials, 17:1327-1332, 1996.
  39. Kondo S, Ohkawa S, Hanawa T, et al. : Environmental durability of composite resins in acidic and alkaline solutions. J Dent Res, 68:447-992, 1989.
  40. Ferracane JL, Condon JR : Rate of elution of leachable components from composite. Dent Mater, 6:282-287, 1990. https://doi.org/10.1016/S0109-5641(05)80012-0
  41. Karabela MM, Sideridou ID. : Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent Mater, 24:1631-1639, 2008. https://doi.org/10.1016/j.dental.2008.02.021
  42. Xia Y, Zhang F, Xie H, et al. : Nanoparticle-reinforced resin-based dental composites. J Dent, 36:450-455, 2008. https://doi.org/10.1016/j.jdent.2008.03.001
  43. Rodrigues SA Jr, Scherrer SS, Ferracane JL, et al. : Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent Mater, 24:1281-1288, 2008. https://doi.org/10.1016/j.dental.2008.02.006
  44. Yesil ZD, Alapati S, Johnston W, et al. : Evaluation of the wear resistance of new nanocomposite resin restorative materials. J Prosthet Dent, 99:435-443, 2008. https://doi.org/10.1016/S0022-3913(08)60105-5
  45. Ernst CP, Brandenbusch M, Meyer G, et al.: Twoyear clinical performance of a nanofiller vs a fineparticle hybrid resin composite. Clin Oral Investig, 10:119-125, 2006. https://doi.org/10.1007/s00784-006-0041-8
  46. Sarkar NK, Xu X. Li L, et al. : Hydrolytic degradation of dental composites. J Dent Res spec., #855, 1996.
  47. Yap AU, Ong LF, Teoh SH, et al. : Comparative wear ranking of dental restoratives with the BIOMAT wear simulator. J Oral Rehabil, 26:228-235, 1999. https://doi.org/10.1046/j.1365-2842.1999.00359.x
  48. 박미란, 양규호, 최남기 등 : 콤포머의 NaOH 용액 내에서의 화학적 분해. 대한소아치과학회, 31:144-152, 2004.
  49. Soderholm KJ, Yang MC, Garcea I. : Filler particle leachability of experimental dental composites. Eur J Oral Sci, 108:555-560, 2000. https://doi.org/10.1034/j.1600-0722.2000.00919.x
  50. Charles RJ. Static fatigue of glass I. J Appl Phys, 29:1549-1553, 1958. https://doi.org/10.1063/1.1722991