Comparative study on the physicochemical properties and cytocompatibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute

미세다공성 Biphasic calcium phosphate ceramics의 골이식 대체재로서의 기본특성에 대한 비교연구

  • Published : 2006.12.31

Abstract

Objective : The purpose of this study was to evaluate the physicochemical properties and cytocompatibility of microporous, spherical biphasic calcium phosphate(BCP) ceramics with a 60/40 $hydroxyapatite/{\beta}$ -tricalcium phosphate weight ratio for application as a bone graft substitute. Materials and Methods : Microporous, spherical BCP granules(MGSB) were prepared and their basic characteristics were compared with commercially available BCP(MBCP; Biomatlante, France) and deproteinized bovine bone mineral(Bio-Oss; GBistlich-Pharma, Switzerland, BBP; Oscotec. Korea), Their physicochemical properties were evaluated by scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometer, and Brunauer-Emmett-Teller method. Cell viability and proliferation of MC3T3-El cells on different graft materials were evaluated. Results : MGSB granules showed a chemical composition and crystallinity similar with those in MBCP, they showed surface structure characteristic of three dimensionally, well-interconnected micropores. The results of MTT assay showed increases in cell viablity with increasing incubation times. At 4d of incubation, MGSB, MBCP and BBP showed similar values in optical density, but Bio-Oss exhibited significantly lower optical density compared to other bone substitutes(p <0,05). MGSB showed significantly greater cell number compared to other bone substitutes at 3, 5, and 7d of incubation(p <0,05), which were similar with those in polystyrene culture plates. Conclusion: These results indicated the suitable physicochemical properties of MGSB granules for application as an effective bone graft substitute. which provided compatible environment for osteoblast cell growth. However, further detailed studies are needed to confirm its biological effects on bone formation in vivo.

Keywords

References

  1. Buser D, Dula K, Belser DC, Rirt HP, Berthold H, Localized ridge augmentation using guided bone regeneration, II, Surgical procedure in the mandible. Int J Periodontics Restorative Dent 1995;15:10-29
  2. Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res 2003:5:154-160 https://doi.org/10.1111/j.1708-8208.2003.tb00197.x
  3. Marx RE, Morales MI. Morbidity from bone harvest in major jaw rsocnstruction: a randomised trial comparing the lateral anterior and posterior approaches to the ilium. J Oral Maxillofac Surg 1988;48: 196203
  4. Mellonig JT. Bone allografts in periodontal therapy. Clin Orthop 1996;324:116-125 https://doi.org/10.1097/00003086-199603000-00014
  5. Rosenberg E, Rose LF. Biologic and clinical consideration for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am 1998;42:467
  6. Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze-dried cortical bone allograft in human periodontal defects. J Periodontol 1988;59:394-397 https://doi.org/10.1902/jop.1988.59.6.394
  7. Schwartz Z, Mellonig JT, Carnes DL, et al. Ability of commercial demineralized freezedried bone allograft to induce new bone formation. J Periodontol 1996:67:918-926 https://doi.org/10.1902/jop.1996.67.9.918
  8. Schwartz Z, Somers A, Mellonig JT, et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependant on donor age but not gender. J Periodontol 1998;69:47-478 https://doi.org/10.1902/jop.1998.69.1.47
  9. Summitt MC, Reisinger KD. Characterization of the mechanical properties of demineralized bone. J Biomed Mater Res 2003;67: 742-750
  10. Zitzmann NU, Scharer P, Marinello CP, Schupbach P, Berglundh T. Alveolar ridge augmentation with Bio-Oss: A histologic study in. humans. Int J Periodontics Restorative Dent 2001;21:289-295
  11. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polack JM. Ionic dissolution products of bioactive glass increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression protein synthesis. Biochem Biophys Res Commun 2000;276:461-465 https://doi.org/10.1006/bbrc.2000.3503
  12. Mangano C, Bartolucci E, Mazzocco C. A new porous hydroxyapatite for promotion of bone regeneration in maxillary sinus augmentation: clinical and histologic study in humans. CIin Oral Implants Res 2003;18: 23-30
  13. Wiltfang J, Schlegel KA, Schultze-Mosgau S, et al. Sinus floor augmentation with ${\beta}$ -tricalciumphosphate (${\beta}$ -TCP): does platelet- rich plasma promote its osseointegration and degradation? Clin Oral Implants Res 2003;14:213-218 https://doi.org/10.1034/j.1600-0501.2003.140212.x
  14. Papacharambous SK, Anastasoff KI. Natural coral skeleton used as onlay graft for contour augmentation on the face. Int J Oral Maxillofac Surg 1993;22:260-264 https://doi.org/10.1016/S0901-5027(05)80511-9
  15. Lewandrowski K, Gresser JD, Wise DL, Trantolo DJ. Bioresorbable bone graft substitutes of different osteoconductivities. Biomaterials 2000;21:757-764 https://doi.org/10.1016/S0142-9612(99)00179-9
  16. Daculsi G, Passuti N, Martin S, et al.. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990;24:379-396 https://doi.org/10.1002/jbm.820240309
  17. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-278
  18. Bagambisa FB, Joos U, Schilli W. Mechanism and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res 1993;27:1047-1055 https://doi.org/10.1002/jbm.820270810
  19. Cavagna H, Daculsi G, Bouler JM. Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long Term Eff Med Implants 1999;9:403-412
  20. Nery EB, LeGeros HZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta-TCP in periodontal osseous defects. J Periodontol 1992;63:729-735 https://doi.org/10.1902/jop.1992.63.9.729
  21. Daculsi G, LeGeros RZ, Nery E, Lynch L, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 1989;23:883-894 https://doi.org/10.1002/jbm.820230806
  22. Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 1990;46: 20-27 https://doi.org/10.1007/BF02555820
  23. Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent 1993;2:158-167 https://doi.org/10.1097/00008505-199309000-00003
  24. Sun JS, Lin FH, Hung TY, et al., The influence of hydroxyapatite particles on osteoclast cell activities. J Biomed Mater Res 1999;45:311-321 https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<311::AID-JBM5>3.0.CO;2-9
  25. Gauthier 0, Bouler JM, Aguado E., et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998;19:133-139 https://doi.org/10.1016/S0142-9612(97)00180-4
  26. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous titanium metal. Biomaterials 2004;25:443-450 https://doi.org/10.1016/S0142-9612(03)00551-9
  27. Hashimoto-Uoshiina M, Ishikawa I, Kinoshita I, Weng HT, Oda S. Clinical and histologic observation of replacement of biphasic calcium phosphate by bone tissue in monkeys. Int J Periodontics Restorative Dent 1995;15:204-213
  28. LeGeros RZ. Calcium phosphate in Oral Biology and Medicine. In Meyers H (ed), Monographs in Oral Sciences Vol 15. Basel, Karger 1991
  29. Froum SJ, Tarnow DP, Wallace SS, Rohrer MC, Cho SC. Sinus floor elevation using anorganic bovine bone matrix(Osteograf/N) with and without autogenous bone: A clinical, histologic, radiographic an histomorphometric analysis-Part 2 of an ongoing prospective study. Int J Periodontics Restorative Dent 1998;18:529-543
  30. Hallman M, Sennerby L,Lundgren S. A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. Int J Oral Maxillofac Implants 2002;17:635-643
  31. Tadjoedin ES, de Lange GL, Holzmann PJ, Kuiper L, Burger EH. Histological observations on biopsies harvested following sinus floor elevation using a bioactive glass material of narrow size range. Clin Oral Implants Res 2000;11:334-344 https://doi.org/10.1034/j.1600-0501.2000.011004334.x
  32. Habibovic P, Yuan H, van der Valk CM, et al. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005;26:3536-3575
  33. Yuan H, Yang Z, Li Y, et al. Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med 1998;9:723-726 https://doi.org/10.1023/A:1008950902047
  34. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 1995;16:31--35
  35. Yang Z, Yuan H, Tong W, et al. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 1996;17:2131-2137 https://doi.org/10.1016/0142-9612(96)00044-0
  36. Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 2000;21:1283-1290 https://doi.org/10.1016/S0142-9612(00)00016-8
  37. Yuan H, Kurashino K, de Bruijin JD, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999;20:1799-1806 https://doi.org/10.1016/S0142-9612(99)00075-7
  38. de Groot J. Carriers that concentrate native bone morphogenetic protein in vivo. Tissue Eng 1998;4:337-341 https://doi.org/10.1089/ten.1998.4.337
  39. Marinucci L, Balloni S, Becchetti E, et al. Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int J Oral Maxillofac Implants 2006;21:719-725
  40. Sammons RL, Lumbikanonda N, Gross M, Cantzler P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration, A scanning electron microscopic study. Clin Oral Implants Res 2005;16:657-666 https://doi.org/10.1111/j.1600-0501.2005.01168.x
  41. Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite following implantation of hydroxyapatite and biphasic calcium phosphate ceramic, a case report. Int J Periodontics Restorative Dent 1986;6:22-33
  42. Gauthier O, Bouler JM, Aguado E, et al. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998;19:133-139 https://doi.org/10.1016/S0142-9612(97)00180-4
  43. Wenz B. Characteristics of Bio-Oss and Bio-Gide, In: Maiorana C & Simion M, editor, Advanced techniques for bone regeneration with Bio-Oss and Bio-Gide. Seoul, Daehan publishing, 2003, p, 75
  44. 박진우. 탈단백 우골의 골이식 대체재로서의 특성에 대한 평가: 세 종류의 골 대체재의 기본 특성에 대한 비교분석. 대한치주과학회지 2005; 35:863-875