DOI QR코드

DOI QR Code

Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites

제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환

  • You, Su Jin (Division of Energy Systems Research, Ajou University) ;
  • Baek, In Gu (Division of Energy Systems Research, Ajou University) ;
  • Park, Eun Duck (Division of Chemical Engineering and Materials Engineering, Ajou University)
  • 유수진 (아주대학교 에너지시스템학부) ;
  • 백인구 (아주대학교 에너지시스템학부) ;
  • 박은덕 (아주대학교 화공.신소재공학부)
  • Received : 2011.11.30
  • Accepted : 2012.01.11
  • Published : 2012.06.01

Abstract

The direct conversion of cellulose into polyols in $H_2$ was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and ${\beta}$. For comparison, Pt catalysts supported on ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, and $SiO_2$ were also tested. The physical properties of the catalysts were probed with $N_2$ physisorption. The surface acidity was measured with temperature programmed desorption of ammonia ($NH_3$-TPD). The Pt content was quantified with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of $H^+$ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.

셀룰로우스를 폴리올로 전환하기 위해 수소의 존재하에서 다양한 제올라이트에 담지된 백금촉매를 비교 연구하였다. 사용한 제올라이트로는 mordenite, Y, ferrierite, 그리고 ${\beta}$이며 비교를 위하여 ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, 그리고 $SiO_2$에 담지한 백금촉매도 사용하였다. 촉매의 물리적 특성은 등온 질소흡착실험을 통하여 분석하였으며 표면 산점의 특성은 암모니아 승온탈착분석법으로 파악하였고 백금의 담지량은 유도결합플라즈마분광법을 사용하여 확인하였으며 백금의 분산도는 일산화탄소의 화학흡착과 투과전자현미경 사진을 통하여 결정하였다. 셀룰로우스의 전환율은 주로 반응온도나 반응시간에 영향을 받는 것으로 나타났는데, 이는 고온의 물에서 발생하는 가역적인 수소이온 때문이다. 사용한 촉매중에서 폴리올의 수득률은 Pt/H-modenite(20)을 사용하였을 때에 가장 높게 나타났으며, Pt/Na-zeolite의 경우 Pt/H-zeolite에 비하여 활성이 낮은 것을 확인할 수 있었다. 폴리올의 수득률은 표면산점의 농도와 관련이 있음을 확인할 수 있었으며, 외부표면적 또한 폴리올의 수득에 영향을 주는 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Huber, G. W., Iborra, S. and Corma, A., "Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering," Chem. Rev., 106, 4044-4098(2006). https://doi.org/10.1021/cr068360d
  2. Rinaldi, R. and Schuth, F., "Design of Solid Catalysts for the Conversion of Biomass," Energy & Environmental Science, 2, 192-196(2009).
  3. Davda, R., Shabaker, J., Huber, G., Cortright, R. and Dumesic, J., "A Review of Catalytic Issues and Process Conditions for Renewable Hydrogen and Alkanes by Aqueous-Phase Reforming of Oxygenated Hydrocarbons over Supported Metal Catalysts," Appl. Catal. B: Environ., 56, 171-186(2005). https://doi.org/10.1016/j.apcatb.2004.04.027
  4. Fukuoka, A. and Dhepe, P. L., "Catalytic Conversion of Cellulose into Sugar Alcohols," Angew. Chem.-Int. Edit., 45, 5161-5163(2006). https://doi.org/10.1002/anie.200601921
  5. Luo, C., Wang, S. and Liu, H., "Cellulose Conversion Into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water," Angew. Chem.-Int. Edit., 46, 7636-7639(2007). https://doi.org/10.1002/anie.200702661
  6. Deng, W., Tan, X., Fang, W., Zhang, Q. and Wang, Y., "Conversion of Cellulose Into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst," Catal. Lett., 133, 167-174(2009). https://doi.org/10.1007/s10562-009-0136-3
  7. Wang, H., Zhu, L., Peng, S., Peng, F., Yu, H. and Yang, J., "High Efficient Conversion of Cellulose to Polyols with Ru/CNTs as Catalyst," Renew. Energy, 37, 192-196(2012). https://doi.org/10.1016/j.renene.2011.06.020
  8. You, S. J., Baek, I. G., Kim, Y. T., Jeong, K.-E., Chae, H.-J., Kim, T.-W., Kim, C.-U., Jeong, S.-Y., Kim, T. J., Chung, Y.-M., Oh, S.-H. and Park, E. D., "Direct Conversion of Cellulose Into Polyols or $H_2$ over Pt/Na(H)-ZSM-5," Korean J. Chem. Eng., 28, 744-750(2011). https://doi.org/10.1007/s11814-011-0019-3
  9. Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P. L., Kasai, K., Hara, K. and Fukuoka, A., "Synthesis of Sugar Alcohols by Hydrolytic Hydrogenation of Cellulose over Supported Metal Catalysts," Green Chem., 13, 326-333(2011). https://doi.org/10.1039/c0gc00666a
  10. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X. and Chen, J. G., "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-promoted Tungsten Carbide Catalysts," Angew. Chem.-Int. Edit., 47, 8510-8513(2008). https://doi.org/10.1002/anie.200803233
  11. Zheng, M.-Y., Wang, A.-Q., Ji, N., Pang, J.-F., Wang, X.-D. and Zhang, T., "Transition Metal-Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol," ChemSusChem, 3, 63-66(2010). https://doi.org/10.1002/cssc.200900197
  12. Zhang, Y., Wang, A. and Zhang, T., "A new 3D Mesoporous Carbon Replicated from Commercial Silica as a Catalyst Support for Direct Conversion of Cellulose into Ethylene Glycol," Chem. Commun., 46, 862-864(2010). https://doi.org/10.1039/b919182h
  13. Ding, L.-N., Wang, A.-Q., Zheng, M.-Y. and Zhang, T., "Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst," ChemSusChem, 3, 818-821(2010). https://doi.org/10.1002/cssc.201000092
  14. Zhu, Y., Kong, Z. N., Stubbs, L. P., Lin, H., Shen, S., Anslyn, E. V. and Maguire, J. A., "Conversion of Cellulose to Hexitols Catalyzed by Ionic Liquid-Stabilized Ruthenium Nanoparticles and a Reversible Binding Agent," ChemSusChem, 3, 67-70(2010). https://doi.org/10.1002/cssc.200900235
  15. Geboers, J., Van de Vyver, S., Carpentier, K., de Blochouse, K., Jacobs, P. and Sels, B., "Efficient Catalytic Conversion of Concentrated Cellulose Feeds to Hexitols with Heteropoly Acids and Ru on Carbon," Catal. Commun., 46, 3577-3579(2010).
  16. Palkovits, R., Tajvidi, K., Ruppert, A.M. and Procelewska, J., "Heteropoly Acids as Efficient Acid Catalysts in the One-step Conversion of Cellulose to Sugar Alcohols," Catal. Commun., 47, 576-578(2011).
  17. Palkovits, R., Tajvidi, K., Procelewska, J., Rinaldi, R. and Ruppert, A., "Hydrogenolysis of Cellulose Combining Mineral Acids and Hydrogenation Catalysts," Green Chem., 12, 972-1112(2010). https://doi.org/10.1039/c000075b
  18. Liang, G., Wu, C., He, L., Ming, J., Cheng, H., Zhuo, L. and Zhao, F., "Selective Conversion of Concentrated Microcrystalline Cellulose to Isosorbide over Ru/C Catalyst," Green Chem., 13, 839-842(2011). https://doi.org/10.1039/c1gc15098g
  19. Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P. and Sels, B., "Efficient Hydrolytic Hydrogenation of Cellulose in the Presence of Ru-Loaded Zeolites and Trace Amounts of Mineral Acid," Catal. Commun., 47, 5590-5592(2011).
  20. Venuto, P. B., "Organic Catalysis over Zeolites: A Perspective on Reaction Paths Within Micropores," Microporous Mater., 2, 297-411(1994). https://doi.org/10.1016/0927-6513(94)00002-6
  21. Tanabea, K. and Hoelderich, W. F., "Industrial Application of Solid Acid${\pm}$Base Catalysts," Appl. Catal. A: Gen., 181, 399-434 (1999). https://doi.org/10.1016/S0926-860X(98)00397-4
  22. Lippens, B. C., Linsen, B. G. and Boer, J. H.D., "Studies on Pore Systems in Catalysts I. the Adsorption of Nitrogen; Apparatus and Calculatio," J. Catal., 3, 32-37(1964). https://doi.org/10.1016/0021-9517(64)90089-2
  23. You, S. J., Kim, S. B., Kim, Y. T. and Park, E. D., "Conversion of Cellulose into Polyols over Noble Metal Vatalysts Supported on Activated Carbon," Clean Technol., 16, 19-25(2010).
  24. Kim, Y. T., Jung, K.-D. and Park, E. D., "A Comparative Study for Gas-Phase Dehydration of Glycerol over H-Zeolites," Appl. Catal. A: Gen., 393, 275-287(2011). https://doi.org/10.1016/j.apcata.2010.12.007
  25. Kim, S. B., You, S. J., Kim, Y. T., Lee, S., Lee, H., Park, K. and Park, E. D., "Dehydration of D-Xylose into Furfural over H-Zeolites," Korean J. Chem. Eng., 28, 710-716(2011). https://doi.org/10.1007/s11814-010-0417-y
  26. Treesukol, P., Srisuk, K., Limtrakul, J. and Truong, T. N., "Nature of the Metal-Support Interaction in Bifunctional Catalytic Pt/H-ZSM-5 Zeolite," J. Phys. Chem. B, 109, 11940-11945(2005). https://doi.org/10.1021/jp0511348
  27. Cabiac, A., Guillon, E., Chambon, F., Pinel, C., Rataboul, F. and Essayem, N., "Cellulose Reactivity and Glycosidic Bond Cleavage in Aqueous Phase by Catalytic and Non Catalytic Transformations," Appl. Catal. A: Gen., 402, 1-10(2011). https://doi.org/10.1016/j.apcata.2011.05.029
  28. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., Shu, Y., Stottlemyer, A. L. and Chen, J. G., "Catalytic Conversion of Cellulose into Ethylene Glycol over Supported Carbide Catalysts," Catal. Today, 147, 77-85(2009). https://doi.org/10.1016/j.cattod.2009.03.012
  29. Li, N. and Huber, G. W., "Aqueous-Phase Hydrodeoxygenation of Sorbitol with $Pt/SiO_2-Al_2O_3$: Identification of Reaction Intermediates," J. Catal., 270, 48-59(2010). https://doi.org/10.1016/j.jcat.2009.12.006
  30. Chheda, J. N., Huber, G. W. and Dumesic, J. A., "Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals," Angew. Chem.-Int. Edit., 46, 7164-7183(2007). https://doi.org/10.1002/anie.200604274

Cited by

  1. Catalysts: Effect of the Preparation Method and Reduction Temperature vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.372