• Title/Summary/Keyword: Inducible nitric oxide synthase 저해

Search Result 92, Processing Time 0.029 seconds

Study of Anti-inflammatory Effect of CopA3 Peptide Derived from Copris tripartitus (애기뿔소똥구리 유래 CopA3합성 펩타이드의 항염증 효능에 관한 연구)

  • Kim, Hyeon-Jeong;Kim, Dong-Hee;Lee, Jin-Young;Hwang, Jae-Sam;Lee, Joon-Ha;Lee, Seul-Gi;Jeong, Hyeon-Guk;An, Bong-Jeun
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • The objective of this study was to evaluate the effect of the synthetic CopA3 peptide of Copris tripartitus on skin inflammation. Regulatory mechanisms of cytokines and nitric oxide (NO) are involved in the immunological activity of RAW 264.7 cells. Tested cells were treated with different concentrations of CopA3 and further cultured for an appropriate time after lipopolyssacharide (LPS) addition. During the entire experimental period, 5, 25, 50, and 100 ${\mu}g/ml$ of CopA3 had no cytotoxicity. At these concentrations, CopA3 inhibited tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). CopA3 also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). CopA3 inhibited the activity of iNOS and COX-2 by 41% and 59%, respectively, at 100 ${\mu}g/ml$. In addition, CopA3 reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These results suggest that CopA3 may have significant effects on inflammatory factors and that it may be a potential anti-inflammatory therapeutic agent.

Anti-inflammatory effect of soil blue-green algae Nostoc commune isolated from Daejeon National Cemetery (국립대전현충원에서 분리한 남조류 구슬말(Nostoc commune)의 항염증 효과)

  • Hong, Hyehyun;Bae, Eun Hee;Park, Tae-Jin;Kang, Min-Sung;Kang, Jae Shin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • We examined the anti-inflammatory properties of Nostoc commune HCW0811 in lipopolysaccharide-stimulated RAW264.7 macrophage cells. The anti-inflammatory activity of HCW0811 on viability of treated cells was assessed by measuring the level of expression of NO, prostaglandin E2 and pro-inflammatory cytokines, namely interleukin-1β, interleukin-6, and tumor necrosis factor-α in HCW0811 treated RAW 264.7 macrophages. HCW0811 was non-toxic to cells and inhibited the production of cytokines in a concentration-dependent manner. In addition its treatment suppressed the production of pro-inflammatory cytokines in a dose-dependent manner, and concomitantly decreased the protein expressions of inducible NO synthase and cyclooxygenase-2. Moreover, the levels of the phosphorylation of mitogen-activated protein kinase family proteins such as extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B were reduced by HCW0811. These findings suggest that the HCW0811 collected from Daejeon National Cemetery have anti-inflammatory effects, and demonstrated its efficacy in cell-based in vitro assays.

Inhibitory effect of Hypericum ascyron on pro-inflammatory responses in lipopolysaccharide-induced Raw 264.7 Cells (Lipopolysaccharide로 유도된 Raw 264.7 cell에서 물레나물(Hypericum asctron)의 Pro-inflammatory 억제 효과)

  • Hong, Eun-Jin;Park, Hye-Jin;Kim, Na-Hyun;Jo, Jae-Bum;Lee, Jae-Eun;Lim, Su-Bin;Ahn, Dong-Hyun;Jung, Hee-Young;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.363-372
    • /
    • 2017
  • Hypericum ascyron has long been used as medicinal plant and recent studies reported that H. ascyron has anti-diabetic, anti-oxidant, and anti-bacterial effects. In this study, inhibitory effect from H. ascyron on pro-inflammatory responses has been investigated. H. ascyron was extracted at optimal extraction condition. Total phenolic contents in water and 90% ethanol were 29.75 and 31.82 mg/g, respectively. Hyaluronidase inhibitory activity of H. ascyron extracts ($50-200{\mu}g/mL$ phenolics) was 0.00-14.81% and 15.33-47.49%, respectively. In cell viability, cell toxicity was shown at concentration of $100{\mu}g/mL$ and $30{\mu}g/mL$ of water and 90% ethanol extract. Therefore, $10-50{\mu}g/mL$ in water extracts and $5-20{\mu}g/mL$ in ethanol extracts was selected each for further study. Inducible nitric oxide synthase (iNOS) derived nitric oxide (NO) and cyclooxygenase (COX)-2-derived prostaglandin $E_2$ ($PGE_2$) protein expression inhibitory effect of extracts were inhibited in a dose dependent manner, significantly. Also, the pro-inflammatory cytokines inhibitory effect such as tumor necrosis $factor-{\alpha}$, nterleukin (IL)-6 and $IL-1{\beta}$ were decreased in the dose dependent manner. The results indicate that H. ascyron extracts reduced inflammatory responses in lipopolysaccharide-induced 264.7 cells via the regulation of the iNOS, COX-2, NO, $PGE_2$, and pro-inflammatory cytokines. Therefore, H. ascyron extracts have significant anti-inflammatory effect and a source as therapeutic materials.

Anti-Inflammatory and Antioxidant Effect of Astaxanthin Derived from Microalgae (미세조류 유래 astaxanthin의 항염증 및 항산화 효과)

  • Kwak, Tae-Won;Cha, Ji-Young;Lee, Chul-Won;Kim, Young-Min;Yoo, Byung-Hong;Kim, Sung-Gu;Kim, Jong-Myoung;Park, Seong-Ha;An, Won-Gun
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1377-1384
    • /
    • 2011
  • Astaxanthin (ATX) is a red-orange carotenoid pigment that occurs naturally in a wide variety of living organisms. In this study we investigated the inhibitory effects of ATX on the induction of inducible nitric oxide synthase (iNOS), nitric oxide (NO), proinflammatory cytokines, nuclear factor-kappa B(NF-${\kappa}B$) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In addition, we tested the superoxide radical scavenging activity of ATX by scavenging assay. iNOS and NF-${\kappa}B$ expressions were determined by immunoblot analysis. Interleukin (IL)-6 and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) were assayed by ELISA. NO production was monitored by measuring the amount of nitrite. ROS was examined by using the 2', 7'-Dichlorodihydrofluorescin diacetate (DCFH-DA) method. At a concentration of 100 ${\mu}M$, ATX inhibited the expression level of LPS-induced NF-${\kappa}B$, as well as the production of LPS-induced NO and proinflammatory cytokines (IL-6 and TNF-${\alpha}$), by suppressing iNOS expression. In particular, the maximal inhibition rate of IL-6 and TNF-${\alpha}$ production by ATX (100 ${\mu}M$) was 65.2----- and 21.2-----, respectively. In addition, ATX inhibited the LPS-induced transcriptional activity of NF-${\kappa}B$, and this was associated with suppressing the translocations of NF-${\kappa}B$ from the cytosol to the nucleus. Moreover, at various concentrations (25-100 ${\mu}M$), ATX inhibited the intracellular level of ROS. At a concentration of 5 mg/ml, the superoxide radical scavenging activity of ATX was 1.33 times higher than ${\alpha}$-tocopherol of the same concentration. These results showed that ATX inhibited the expression of iNOS and the production of NO and proinflammatory cytokines resulting from ROS production and NF-${\kappa}B$ activation in macrophages. Furthermore, ATX was found to be more effective in superoxide radical scavenging activities compared to ${\alpha}$-tocopherol. These findings are expected to strengthen the position of ATX as anti-inflammatory medicine and antioxidant.

Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle (Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과)

  • Lee, Hyun Ah;Kim, Ji Eun;Choi, Jun Young;Sung, Ji Eun;Youn, Woo Bin;Son, Hong Joo;Lee, Hee Seob;Kang, Hyun-Gu;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells can be considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Asparagus cochinchinensis has traditionally been used as a medicine to treat fever, cough, kidney disease, breast cancer, inflammatory diseases, and brain diseases. In this study, we investigated the neuroprotective mechanism of an aqueous extract from A. cochinchinensis root (AEAC), particularly its anti-inflammatory effects on lipopolysaccharide (LPS)-activated BV-2 microglial cells. BV-2 cells were treated with four different concentrations of AEAC. No significant toxicity was detected in BV-2 cells treated with AEAC. Nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA, and inducible nitric oxide synthase (iNOS) mRNA levels were 21% lower in the AEAC+LPS group than in the Vehicle+LPS group. Lower proinflammatory (TNF-α and IL-1β) and anti-inflammatory cytokine (IL-6 and IL-10) levels were also detected in the AEAC+LPS group than in the Vehicle+LPS group, albeit at varying rates. Moreover, the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group compared to the Vehicle+LPS group, enhancement of the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group, while cell cycle arrest at the G2/M phase caused by LPS treatment was less severe in the AEAC+LPS group. The increase in reactive oxygen species (ROS) generation induced by LPS treatment was also lower in the AEAC-pretreated group than in the Vehicle+LPS group. This is the first study to show that AEAC exerts anti-neuroinflammatory activity against LPS stimulation by regulating the MAPK signaling pathway, the cell cycle, and ROS production.

Antioxidant capacity and Raw 264.7 macrophage anti-inflammatory effect of the Tenebrio Molitor (갈색거저리(Tenebrio Molitor)의 항산화능과 Raw 264.7 대식세포의 항염증 효과)

  • Yu, Jae-Myo;Jang, Jae-Yoon;Kim, Hyeon-Jeong;Cho, Yong-Hun;Kim, Dong-in;Kwon, O-jun;Cho, Yeong-Je;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.890-898
    • /
    • 2016
  • The purpose of this paper is to investigate potential anti-inflammatory and anti-oxidant effects of Tenebrio molitor. Macrophage cell response by outside stimulation leads expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), $interleukin-1{\beta}$ ($IL-1{\beta}$), and trigger expression of genes which are affected by inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), resulting in formation of inflammatory factors like nitric oxide (NO) and Prostaglandin $E_2$ (PGE2). Cell viability was determined by MTT assay. In order to investigate anti-inflammatory agents, the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO in RAW 264.7 cells were examined. T. Molitor significantly decreased the production of NO in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. As a result, the levels of protein such as $PGE_2$, iNOS, COX-2 and MARKs were significantly reduced compared to non-treated group in T. Molitor water extract (TDW) treated group. Also, antioxidant effect of T. Molitor were investigated using DPPH, ABTS+ and superoxide anion radical scavenging activity tests in cell-free system. Antioxidant activity of T. molitor was found low in the DPPH radical scavenging test while high in the ABTS+ and superoxide anion radical scavenging activity tests. These results show that TDW could be an effective anti-pro-inflammatory and anti-oxidant agent.

Anti-Oxidative and Anti-Inflammatory Activities of Cotoneaster horizontalis Decne Extract (Cotoneaster horizontalis Decne 추출물의 항산화 및 항염증 활성)

  • Lee, Ji Young;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.280-285
    • /
    • 2015
  • Anti-oxidative and anti-inflammatory activities of Cotoneaster horizontalis Decne ethanol extract (CHEE) were evaluated. CHEE possessed a potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl, which was similar to the activity of ascorbic acid which was used as a positive control. CHEE also effectively suppressed hydrogen peroxide-induced reactive oxygen species on RAW 264.7 cells. Furthermore, CHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1, and its upstream transcription factor, nuclear factor-E2-related factor 2. CHEE inhibited LPS induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results provide us with an important new insight; that C. horizontalis possesses anti-oxidative and anti-inflammatory activities. Therefore, C. horizontalis may be utilized as a promising material in the field of nutraceuticals.

Anti-inflammatory effect of beluga lentil extract in RAW 264.7 macrophages (RAW 264.7 대식세포에서 벨루가 렌틸 추출물의 항염증 효과)

  • Hyeon-Ji Song;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.462-473
    • /
    • 2024
  • The anti-inflammatory effect of beluga lentil extract (BLE) and its underlying mechanisms were investigated in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Treatment with BLE significantly decreased nitric oxide (NO) production and protein and mRNA expressions of inducible NO synthase (iNOS) in LPS-treated RAW 264.7 cells. Down-regulation of this inflammatory gene expression was not associated with NF-κB/MAPK signaling pathways, and further mechanistic studies demonstrated that BLE decreased LPS-induced iNOS expression through upregulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) expression. These results suggest that beluga lentil represent a potential source of natural anti-inflammatory agents, and further studies will be necessary to determine its anti-inflammatory effects in vivo.

Antioxidant and Anti-inflammatory Effects of Extracts from the Flowers of Weigela subsessilis on RAW 264.7 Macrophages (RAW 264.7 대식세포에 미치는 병꽃나무 꽃 추출물의 항산화 및 항염증 효과)

  • Yoo, Yung Choon;Lee, Gye Won;Cho, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.338-345
    • /
    • 2016
  • This study investigated the antioxidant and anti-inflammatory activity of ethanol extract from the flowers of Weigela subsessilis (WS-E) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The total polyphenol and flavonoid content was 719.19±0.04 μg tannic acid equivalents/ml and 644.87±0.02 μg quercetin equivalents/ml, respectively. The antioxidant activities of WS-E were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radical scavenging activity. The antioxidant activities of WS-E increased markedly, in a dose-dependent manner. To screen for anti-inflammatory agents, the inhibitory effects of WS-E on the production of proinflammatory cytokines in the LPS-stimulated RAW 264.7 macrophages was examined. WS-E had no effect on cell viability at a concentration of 100 μg/ml. Nitric oxide (NO) and interleukin (IL)-6 production were inhibited in a dose-dependent manner (p<0.05). WS-E had no effect on the production of tumor necrosis factor (TNF)-α at a concentration of 0.16–20 μg/ml but induced TNF-α at a concentration of 100 μg/ml. Inducible nitric oxide synthase (iNOS) expression was also inhibited at lower concentrations (p<0.05). In addition, WS-E reduced the activation of nuclear factor (NF)-κB by inhibition of inhibitoy (I) κB phosphorylation in RAW 264.7 macrophages upon stimulation with LPS (100 ng/ml) for 24 h but not that of mitogen-activated protein kinase (MAPK). These results suggest that WS-E may be a useful antioxidant and anti-inflammatory agent in functional cosmetics.

Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2 (마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절)

  • Lee, Seung-Hoon;Lee, Eun-Joo;Chung, Chungwook;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.129-134
    • /
    • 2019
  • In a previous study, we isolated 11 different kinds of compounds from ethyl acetate fractions of lees (jubak) which is a by-product of Korean traditional wine production. These compounds were identified as caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, and vanilic acid. To evaluate their anti-inflammatory activities in an in vitro model, nitric oxide (NO) production was measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after the treatment of these cells with each compound. Among the various chemicals, hesperetin and naringenin showed the highest inhibition of NO production in the LPS-activated RAW 264.7 cells. Hesperetin was chosen for further study because of its strong anti-inflammatory activity and because the mechanisms underlying its anti-inflammatory properties still remain unclear. Our results showed that hesperetin dramatically inhibited NO production in a dose-dependent manner as compared with in an LPS-only treated group, without affecting cell viability. In addition, hesperetin reduced the protein expression of the pro-inflammatory gene inducible nitric oxide synthase (iNOS) in a dose-dependent manner, whereas it did not affect cyclooxygenase-2 (COX-2) expression. Furthermore, hesperetin inhibited phosphorylation of p38 mitogen- activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) 1/2, whereas it did not affect phosphorylation of c-jun N- terminal kinase (JNK). The results indicated that hesperetin regulated the LPS-induced inflammatory response by suppressing p38 MAPK and ERK1/2 signaling. Overall, our results may help to understand the mechanisms underlying the anti-inflammatory activity mediated by hesperetin.