Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.1.38

Study of Anti-inflammatory Effect of CopA3 Peptide Derived from Copris tripartitus  

Kim, Hyeon-Jeong (Department of Cosmeceutical Science, Daegu Haany University)
Kim, Dong-Hee (Korea Promotion Institute for Traditional Medicine Industry)
Lee, Jin-Young (Department of Herbal Cosmetic Science, Hoseo University)
Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science)
Lee, Joon-Ha (Department of Agricultural Biology, National Academy of Agricultural Science)
Lee, Seul-Gi (Department of Cosmeceutical Science, Daegu Haany University)
Jeong, Hyeon-Guk (Department of Cosmeceutical Science, Daegu Haany University)
An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Haany University)
Publication Information
Journal of Life Science / v.23, no.1, 2013 , pp. 38-43 More about this Journal
Abstract
The objective of this study was to evaluate the effect of the synthetic CopA3 peptide of Copris tripartitus on skin inflammation. Regulatory mechanisms of cytokines and nitric oxide (NO) are involved in the immunological activity of RAW 264.7 cells. Tested cells were treated with different concentrations of CopA3 and further cultured for an appropriate time after lipopolyssacharide (LPS) addition. During the entire experimental period, 5, 25, 50, and 100 ${\mu}g/ml$ of CopA3 had no cytotoxicity. At these concentrations, CopA3 inhibited tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and interleukin-6 (IL-6). CopA3 also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). CopA3 inhibited the activity of iNOS and COX-2 by 41% and 59%, respectively, at 100 ${\mu}g/ml$. In addition, CopA3 reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. These results suggest that CopA3 may have significant effects on inflammatory factors and that it may be a potential anti-inflammatory therapeutic agent.
Keywords
Anti-inflammatory; cyclooxygenase-2 (COX-2); inducible NO synthase (iNOS); CopA3; cytokine; Copris tripartitus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aggarwal, B. B. 2003. Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3, 745-756.   DOI   ScienceOn
2 Bang, H. S., Lee, J. H., Kwon, O. S., Na, Y. E., Jang, Y. S. and Kim, W. H. 2005. Effects of paracoprid dung beetles (Coleoptera:Scarabaeidae) on the growth of pasture garbage and on the underlying soil. Applied Soil Ecology 29, 165-171.   DOI   ScienceOn
3 Bornemissza, G. F. and Williams, C. H. 1970. An effect of dung beetle activity on plant yield. Pedobiologia 10, 1-7.
4 Delgado, A. V., McManus, A. T. and Chambers, J. P. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance. Neuropeptide 37, 355-361.   DOI   ScienceOn
5 Fincher, G. T. 1981. The potential value of dung beetles in pasture ecosystems. J Ga Entomol Soc 16, 316-333.
6 Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensin like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept DOI: 10.1155/2009/136284.   DOI
7 Higuchi, M., Higashi, N., Taki, H. and Osawa, T. 1990. Cytolytic mechanism of activated macrophases. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the mafor cytolytic mechanism of activated macrophages. J Immunol 144, 1425-1431.
8 Tizard, I. R. and Schubot, R. M. 2004. Veterinary immunology : An introduction. W. B. Saunders Company. U.S.
9 Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensing-like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int J Pept 136.
10 Kang, B. R., Kim, H., Nam, S. H., Yun, E. Y., Kim, S. R., Ahn, M. Y., Chang, J. S., and Hwang, J. S. 2012. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Reports 45, 85-90.   과학기술학회마을   DOI   ScienceOn
11 Kang, J. K., Hwang, J. S., Nam, H. J., Ahn, K., Seok, J. H., and Kim, S. K. 2011. The insect peptide Coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob Agents Chemother 55, 4850-4857.   DOI   ScienceOn
12 Kim, R. G., Shin, K. M., Chun, S. K., Ji, S. Y., Seo, S. H., Park, H. J., Choi, J. W. and Lee, K. T. 2002. In vitro anti-inflammatory activity of the essential oil from ligularia fischeri var. spiciformis in murine macrophage Raw 264.7 cells. Yakhak Hoeji 46, 343-347.
13 Palmer, R. M., Ashton, D. S. and Moncada, S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666.   DOI   ScienceOn
14 Lee, Y. S., Kim, H. S., Kim, S. K. and Kim, S. D. 2000. IL-6 mRNA expression in mouse peritoneal macrophages and NIH3T3 fibroblasts in response to Candida albicans. J Microbiol Biotech 10, 9-15.   과학기술학회마을
15 Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. 2003. Inhibition of lipopolysaccharide inducible nitric oxide synthase, TNF-${\alpha}$ and COX-2 expression by sauchinone effects on I-${\kappa}B{\alpha}$ phosphorylation, C/EBP and AP-1 activation. British J Pharmacol 139, 11-20.   DOI   ScienceOn
16 Mori, M. 2007. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr 137, 1616-1620.
17 Park, D. S., Yoo, M. A., Xu, M. Z., Yu, H. N., Kim, J. R., Jeong, T. S. and Park, H. Y. 2004. Original articles : Screening of anti-atherogenic substances from insect resources. Korean J Pharmacogn 35, 233-238.
18 Park, K. T. and Lee, J. S. 1998. Review on insect resources for medical use in kangwon Province. Korean J Apiculture 13, 79-92.
19 Suh, Y. J. 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities.: A shor review. Food Chem Toxicol 40, 1091-1097.   DOI   ScienceOn
20 Tezuka, Y., Irikawa, S., Kaneko, T., Banskota, A. H., Nagaoka, T., Xiong, Q., Hase, K. and Kadota, S. 2001. Screening of chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of zanthoxylum bungeanum. J Ethnopharmacol 77, 209-217.   DOI   ScienceOn
21 Yun, H. J., Heo, S. K., Lee, Y. T., Park, W. H. and Park, S. D. 2008. Anti-inflammatory effect of Evodia Officinalis DODE in mouse macrophage and human vascular endotherial cells. Korean J Herbology 23, 29-38.
22 Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-γ, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316, 209-215.
23 Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a beter therapy. Annals of the rheumatic disease. Ann Rheum Dis 34, 471-478.   DOI   ScienceOn
24 Won, S. J., Park, H. J. and Lee, K. T. 2008. Inhibition of LPS induced iNOS, COX-2 and cytokines expression by slidroside through the NF-${\kappa}B$ inactivation in RAW 264.7 cells Korean J Pharmacogn 39, 110-117.