• Title/Summary/Keyword: Inducible NO synthase

Search Result 811, Processing Time 0.024 seconds

Suppressive effects on the expression of cyclooxygenase-2 and inducible nitric oxide synthase by a natural sesquiterpenoid in lipopolysaccharide-stimulated mouse macrophage cells

  • Min, Hye-Young;Park, Hyen-Joo;Park, Eun-Jung;Lee, Sang-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.101-101
    • /
    • 2003
  • Prostaglandins (PGs) and nitric oxide (NO) produced by inducible cyclooygenase (COX-2) and nitric oxide synthase (iNOS), respectively, have been implicated as important mediators in the process of inflammation and carcinogenesis. On this line, the potential COX-2 or iNOS inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. In our continuing efforts of searching for novel cancer chemopreventive agents from natural products, we isolated natural sesquiterpenoids as potential COX-2 and iNOS inhibitors in cultured lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells. Alantolactone, a natural eudesmane-type sesquiterpenoid, exhibited a potent inhibition of COX-2 (IC50 = 0.4 $\mu\textrm{g}$/$m\ell$) and iNOS activity (IC50 = 0.08 $\mu\textrm{g}$/$m\ell$) in the assay system determined by PGE2 and NO accumulation, respectively. The inhibitory potential of alantolactone on the PGE2 and NO production was well coincided with the suppression of COX-2 and iNOS protein and mRNA expression in LPS-induced macrophages. Furthermore, alantolactone inhibited NF-kB but not AP-l binding activity on nuclear extracts evoked by LPS-stimulated macrophage cells, suggesting the possible involvement of NF-kB in the regulation of COX-2 and iNOS expression. In further study with COX-2-expressing human colon HT-29 cells, alantolactone inhibited the cell proliferation, down-regulated COX-2, and inhibited the ERK phosphorylation in the early time. These results suggest that a natural sesquiterpenoid alantolactone might be a potential lead candidate for further developing COX-2 or iNOS inhibitor possessing cancer chemopreventive or anti-inflammatory activity

  • PDF

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.

Anti-inflammatory effects of Chrysanthemum boreale flower (산국 꽃의 항염 활성 연구)

  • You, Ki-Sun;Bang, Chan-Sung;Lee, Kyung-Jin;Ham, In-Hye;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Objectives : Chrysanthemum boreale flower is widely distributed in Korea, Japan, China, and Eastern countries. C. boreale flower is also one of the herbs used for the treatment of various inflammatory disease in Korean Medicine. So, this research was designed to study anti-inflammatory effect of C. boreale flower and its mechanism. Methods : We investigated nitro oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production by ELISA. And expressions of inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ P50/65 (NF-${\kappa}B$ P50, NF-${\kappa}B$ P65) were measured in RAW 264.7 murine macrophage cells induced by LPS. Results : MeOH ex., EtOAc fr., $CHCl_3$ fr. and Water fr. of C. boreale flower showed anti-inflammatory effect through inhibition of NO and PGE expression respectively. Among them, EtOAc fr. and $CHCl_3$ fr. inhibited production of NO and $PGE_2$ through inhibition of iNOS and COX-2 expression. And MeOH ex., EtOAc fr. and $CHCl_3$ fr. inhibited translocation of NF-${\kappa}B$ P65, NF-${\kappa}B$ P50 by inhibiting phosphrylation of $I{\kappa}B$. Conclusions : MeOH ex. EtOAc fr, $CHCl_3$ fr., and Water fr. of the C. boreale flower have anti-inflammatory activity.

A Comparison of the Anti-inflammatory Activity of Surfactin A, B, C, and D from Bacillus subtilis

  • Kim, Sung-Dae;Cho, Jae-Youl;Park, Hwa-Jin;Lim, Chang-Ryul;Lim, Jong-Hwan;Yun, Hyo-In;Park, Seung-Chun;Kim, Sang-Keun;Rhee, Man-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1656-1659
    • /
    • 2006
  • Natural surfactins are a mixture of isoforms that differ slightly in their physiological properties. In previous research, we obtained surfactin A, B, C, and D from the Bacillus subtilis complex BC1212. We found that surfactin C inhibited nitric oxide (NO)-production and suppressed the expression of pro-inflammatory cytokine mRNA, which was stimulated by $1{\mu}g/ml$ of lipopolysaccharide (LPS) in murine RAW264.7 cells. In order to compare the anti-inflammatory effects of surf actin isoforms, we examined the inhibition of LPS-induced NO production and the pro-inflammatory cytokine expression level. Surfactin C inhibited the LPS-induced NO production in murine macrophage RAW264.7 cells the most. In addition, surf actin C was superior to other surfactin's subtypes regarding inhibiting the expression of inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein 1 (MCP-1). Finally, the anti-inflammatory activity of surf actin C is the most potent, compared with surfactin A, B, and D.

Inhibitory Effects of Methanolic Extracts of Medicinal Plants on Nitric Oxide Production in Activated Macrophage RAW 264.7 Cells (약용식물 추출물에 의한 면역세포 산화질소 생성 억제 활성 분석)

  • Seo, Jin-Suk;Lee, Tae-Hoon;Lee, Sang-Min;Lee, Seung-Eun;Seong, Nak-Sul;Kim, Ji-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • A variety of herbs and plants have been traditionally used in oriental folk medicine for the treatment of inflammatory diseases. In our attempt to search for anti-inflammatory agents from natural products, we investigated 64 methanol extracts from 42 medicinal plants belonging to 10 families which were evaluated for inhibitory activities of NO production in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. Among them, 16 extracts exhibited inhibitory activities of NO production ($IC_{50}$ values ranging from 59.6 to 94.7 ${\mu}g/m{\ell}$). Only the extract from aerial parts of Hosta lancifolia (H. lancifolia) did not exert cytotoxic effects at the concentrations tested. The extract from H. lancifolia decreased the mRNA and protein levels of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in activated macrophage RAW 264.7 cells in dose-dependent manner. The results suggest that the extract may contain bioactive compounds that suppress expression of pro-inflammatory cytokines, which may prove beneficial with regard to the development of natural agents for prevention and treatment of inflammatory diseases.

Anti-inflammatory Effects of Ethanol Extract of Various Korean Compositae Herbs in LPS-induced RAW 264.7 Macrophages

  • Seo, Min-gyu;Kang, Yun-Mi;Chung, Kyung-Sook;Cheon, Se-Yun;Park, Jong Hyuk;Lee, Young-Cheol;An, Hyo-Jin
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.17-24
    • /
    • 2017
  • Objective : This study was designed to evaluate candidate materials as anti-inflammation agent from extracts of various Korean Compositae herbs in Hwaak mountain. Among Korea medicinal herbs, Ainsliaea acerifolia (AA) belongs to the Compositae family, has been used for the treatment of rheumatic arthritis. However, AA has not been previously reported to have an anti-inflammatory effect. Therefore, we investigated the anti-inflammatory effects of AA and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods : Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in RAW 264.7 macrophages. Nitric oxide (NO) was measured with Griess reagent and pro-inflammatory cytokines were detected by enzyme immunoassay (EIA) kits in LPS-stimulated RAW 264.7 macrophages. Protein expressions of inducible nitric oxide synthase, and cyclooxygenase-2 (COX-2) and p65 subunit of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) were determined by Western blot analysis. Results : Among 8 extracts of Korean Compositae herbs tested, AA showed the inhibition of NO production without cytotoxicity. Consistent with the observation, AA reduced the expression levels of iNOS and COX-2 proteins in LPS-simulated RAW 264.7 macrophages in dose-dependent manner. In addition, AA inhibited the productions of $TNF-{\alpha}$ and IL-6 in LPS-simulated RAW 264.7 macrophages. However, AA did not inhibit activation of p65 $NF-{\kappa}B$ in LPS-simulated RAW 264.7 macrophages. Conclusion : These results suggest that down-regulation of iNOS, COX-2 protein expression and $TNF-{\alpha}$ and IL-6 production by AA are responsible for its anti-inflammatory effects.

Inhibitory Effect of Chan-Su on the Secretion of PGE2 and NO in LPS-stimulated BV2 Microglial Cells

  • Kim, Min-Hee;Lyu, Ji-Hyo;Lyu, Sun-Ae;Hong, Sang-Hoon;Kim, Won-Il;Yoon, Hwa-Jung;Ko, Woo-Shin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1315-1321
    • /
    • 2008
  • Chan-Su (Venenum bufonis) has long been for a variety of other purposes including treatment of inflammation in the folk medicine recipe. Since nitric oxide (NO) is one of the major inflammatory parameters, we first studied the effects of Chan-Su on NO production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, Chan-Su inhibited the secretion of NO in BV2 microglial cells, without affecting cell viability, The protein level of inducible nitric oxide synthase (iNOS) was decreased by Chan-Su, And Chan-Su also inhibited production of prostaglandin E2 (PGE2) and expression of cyclooxygenase (COX)-2. Proinflammatory cytokines, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$ and IL-12, were inhibited by Chan-Su in a dose-dependent manner. And Chan-Su inhibited the degradation of ${IkB-\alpha}$, which was considered to be inhibitor of nuclear factor $(NF)-{\kappa}B$, one of a potential transcription factor for the expression of iNOS, COX-2 and proinflammatory cytokines. These results suggest that Chan-Su could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $I{\kappa}B-{\alpha}$ degradation.

The Effects of Bee Venom on PLA2, COX-2, iNOS, AA and PG in RAW 264.7 Cells (봉약침액(蜂藥鍼液)이 PLA2, COX-2, iNOS, AA 및 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Ha, Seang-Jong;Lee, Seong-No;Jo, Hyun-Chul;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.5 no.2
    • /
    • pp.40-51
    • /
    • 2002
  • Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide-induced expression phospholipase $A_2$, cyclooxygenase-2 and inducible nitrogen oxide synthase, and the generation of arachidonic acid, prostaglandin D2 and E2 in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase $A_2$, cyclooxygenase and inducible nitrogen oxide synthase was determined by western blotting with corresponding antibodies, and the generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ was assayed by ELISA method in RAW 264.7 cells. The non-toxic concentrations (0.1 to $5\;{\mu}g/ml$) of bee venom determined by MTT assay, were used in this study. Results : 1. Bee venom inhibited lipopolysaccharide-induced expression of phospholipase $A_2$ in a dose dependent manner after 48 hours treatment. 2. Bee venom inhibited lipopolysaccharide-induced expression of cyclooxygenase-2 in a dose dependent manner after 24 and 48 hours treatment. 3. Bee venom inhibited lipopolysaccharide-induced expression of inducible nitrogen oxidesynthase in a dose dependent manner after 48 hours treatment. 4. The generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ was not much affected by the treatment of bee venom on the lipopolysaccharide-induced generation of arachidonic acid, prostaglandin $D_2$ and $E_2$ in RAW 264.7 cells.

Effects of the Constituents of Gardenia Fructus on Prostaglandin and NO Production

  • Lim, Hyun;Park, Kwang-Rock;Lee, Dong-Ung;Kim, Yeong-Shik;Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.82-86
    • /
    • 2008
  • The fruits of Gardenia jasminoides Ellis have been previously reported to possess anti-inflammatory activity. In this study, the constituents including geniposide, geniposidic acid, genipin and crocin were evaluated for their effects on prostaglandin and NO production in an attempt to establish anti-inflammatory cellular mechanisms. Among the constituents tested, only genipin significantly inhibited cyclooxygenase-2-mediated $PGE_2$ and inducible nitric oxide synthase-mediated NO production from lipopolysaccharide-treated RAW 264.7 cells at 10-100 ${\mu}$M. Genipin also inhibited nuclear transcription factor-${\kappa}B$ activation. Moreover, genipin showed in vivo antiinflammatory activity on ${\lambda}$-carrageenan-induced paw edema in mice (10.4-29.9% inhibition at 20-100 mg/kg, i.p.). All of these results suggest that genipin may contribute to anti-inflammatory activity of the fruits of G. jasminoides and an inhibitory action on prostaglandin and NO production is, at least, the part of anti-inflammatory mechanism of genipin.