• Title/Summary/Keyword: Indium oxide

Search Result 1,235, Processing Time 0.031 seconds

Light Effects of amorphous indium gallium zinc oxide thin-film transistor

  • Lee, Keun-Woo;Shin, Hyun-Soo;Heo, Kon-Yi;Kim, Kyung-Min;Kim, Hyun-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.531-533
    • /
    • 2009
  • We've studied the optical and electrical properties of amorphous indium gallium zinc oxide thin-film transistor (a-IGZO TFT). When the a-IGZO TFT was illuminated at a wavelength of 660 nm, the offstate drain current was slightly increased, while below 550 nm it was increased significantly. The a-IGZO TFT was extremely sensitive, with deep-level defects at approximately 2.25 eV near the midgap.

  • PDF

Influences of Target-to-Substrate Distance and Deposition Temperature on a-SiOx/Indium Doped Tin Oxide Substrate as a Liquid Crystal Alignment Layer (RF 마그네트론 스퍼터링에서 증착거리와 증착온도가 무기 액정 배향막의 물리적 성질에 미치는 영향에 대한 연구)

  • Park, Jeung-Hun;Son, Phil-Kook;Kim, Ki-Pom;Pak, Hyuk-Kyu
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.521-528
    • /
    • 2008
  • We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-$SiO_x$) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-$SiO_x$ decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between $150^{\circ}\;and\;200^{\circ}$. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-$SiO_x$ thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-$SiO_x$ showed homogeneous alignment; however, in the lower case (x < 1.6), liquid crystals showed homeotropic alignment.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Electrochemical Preparation of Indidum Sulfide Thin Film as a Buffer Layer of CIGS Solar Cell (CIGS 태양전지 버퍼층으로의 활용을 위한 인듐설파이드의 전기화학적 합성)

  • Kim, Hyeon-Jin;Kim, Kyu-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2011
  • CIGS solar cells are kind of thin film solar cells, which are studied several years. CdS buffer layer that makes heterojunction between window layer and absorbing layer was one of issue in the CIGS solar cell study. New types of buffer layer consisted of indium sulfide are being studied these days owing to high price and environmental harmful of CdS. In this study, we demonstrated electrochemical synthesis of indium sulfide film as a buffer layer, which is cheaper and faster than other methods. A uniform indium sulfide film was obtained by applying two different alternating potentials. The band gap of the film was optimized by controlling temperature during the electrochemical synthesis. Using x-ray photoelectron spectroscopy and diffraction method we confirmed that ${\beta}$-indium sulfide was formed on ITO electrode surface.

Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids (유기산에 의한 인듐스크랩에서 고순도 인듐옥살산염의 제조)

  • Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.661-665
    • /
    • 2013
  • Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, $80^{\circ}C$, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination.

Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2505-2511
    • /
    • 2014
  • Indium oxide nanocrystals ($In_2O_3$ NCs) with sizes of 5.5 nm-10 nm were synthesized by hot injection of the mixture precursors, indium acetate and oleic acid, into alcohol solution (1-octadecanol and 1-octadecence mixture). Field emission transmission electron microscopy (FE-TEM), High resolution X-Ray diffraction (X-ray), Nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FT-IR) were employed to investigate the size, surface molecular structure, and crystallinity of the synthesized $In_2O_3$ NCs. When covered by oleic acid as a capping group, the $In_2O_3$ NCs had a high crystallinity with a cubic structure, demonstrating a narrow size distribution. A high mobility of $2.51cm^2/V{\cdot}s$ and an on/off current ratio of about $1.0{\times}10^3$ were observed with an $In_2O_3$ NCs thin film transistor (TFT) device, where the channel layer of $In_2O_3$ NCs thin films were formed by a solution process of spin coating, cured at a relatively low temperature, $350^{\circ}C$. A size-dependent, non-monotonic trend on electron mobility was distinctly observed: the electron mobility increased from $0.43cm^2/V{\cdot}s$ for NCs with a 5.5 nm diameter to $2.51cm^2/V{\cdot}s$ for NCs with a diameter of 7.1 nm, and then decreased for NCs larger than 7.1 nm. This phenomenon is clearly explained by the combination of a smaller number of hops, a decrease in charging energy, and a decrease in electronic coupling with the increasing NC size, where the crossover diameter is estimated to be 7.1 nm. The decrease in electronic coupling proved to be the decisive factor giving rise to the decrease in the mobility associated with increasing size in the larger NCs above the crossover diameter.

Trends of Recycling of Indium-Tin-Oxide (ITO) Target Materials for Transparent Conductive Electrodes (TCEs) (투명전극용 인듐 주석 산화물 타겟 소재의 재자원화 동향)

  • Hong, Sung-Jei;Lee, Jae Yong
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • Indium-Tin-Oxide (ITO) is a material that is widely used for transparent conductive electrodes (TCEs). Indium (In), chief element of the ITO, is expected to be depleted in the near future owing to its high cost and limited reserves. To overcome the issue, ITO has to be retained by recycling redundant ITO targets after manufacturing processes. In this article, we proposed an efficient recycling way of the redundant ITO targets with investigation of the current recycling tendencies in domestic and foreign countries. As a result, it was revealed that only In is recycled from the redundant targets in domestic and Japan. As well, fabrication of TCEs is being researched with ITO nanoparticles solutions. However, since the TCEs fabricated with ITO target is superior to those with other materials, it is thought that establishment of regeneration technology of ITO itself is demanded for an efficient recycling and fabrication of ITO target.

Transparent-Oxide-Semiconductor Based Staggered Self-Alignment Thin-Film Transistors

  • Yamagishi, Akira;Naka, Shigeki;Okada, Hiroyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1105-1106
    • /
    • 2008
  • Staggered type self-aligned transparent-oxide-semiconductor transistors with indium-zinc-oxide as a semiconductor have studied. In this device fabrication, successive sputtering of oxide semiconductor and insulator without breaking of vacuum and without exposing in air, humidity and oxygen can be realized because oxide semiconductor is transparent. As a result of fabrication, transistor characteristics with mobility of $30cm^2/Vs$ and on-off ratio of $10^5$ could be obtained for the newly developed self-alignment device structure.

  • PDF

Investigation of Plasma Damage and Restoration in InGaZnO Thin-Film Transistors

  • Jeong, Ha-Dong;Park, Jeong-Hun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.1-209.1
    • /
    • 2015
  • Indium gallium zinc oxide (IGZO), indium zinc oxide (IZO) 그리고 zinc tin oxide (ZTO) 같은 zinc oxide 기반의 산화물 반도체는 높은 이동도, 투과도 그리고 유연성 같은 장점을 갖고 있어, display application의 backplane 소자로 적용되고 있다. 또한 최근에는 산화물 반도체를 이용한 thin-film transistor (TFT) 뿐만아니라 resistive random access memory (RRAM), flash memory 그리고 pH 센서 등 다양한 반도체 소자에 적용을 위한 연구가 활발히 진행 중이다. 그러나 zinc oxide 기반의 산화물 반도체의 전기 화학적 불안정성은 위와 같은 소자에 적용하는데 제약이 있다. 산화물 반도체의 안정성에 영향을 미치는 다양한 요인들 중 한 가지는, sputter 같은 plasma를 이용한 공정 진행 시 active layer가 plasma에 노출되면서 threshold voltage (Vth)가 급격하게 변화하는 plasma damage effect 이다. 급격한 Vth의 변화는 동작 전압의 불안정성을 가져옴과 동시에 누설전류를 증가시키는 결과를 초래 한다. 따라서 본 연구에서는, IGZO 기반의 TFT를 제작 후 plasma 분위기에 노출시켜, power와 노출 시간에 따른 전기적 특성 변화를 확인 하였다. 또한, thermal annealing을 적용하여 열처리 온도와 시간에 따른 Vth의 회복특성을 조사 하였다. 이러한 결과는 추후 산화물 반도체를 이용한 다양한 소자 설계 시 유용할 것으로 기대된다.

  • PDF

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.