• Title/Summary/Keyword: Indirect Energy

Search Result 464, Processing Time 0.028 seconds

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

Trust-aware secure routing protocol for wireless sensor networks

  • Hu, Huangshui;Han, Youjia;Wang, Hongzhi;Yao, Meiqin;Wang, Chuhang
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.674-683
    • /
    • 2021
  • A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.

Thermal Characteristics and Cooling Experiments and Analysis of Finite Elements in the Discharge of Lithium-Ion Batteries (리튬이온 배터리 방전 시 발열 특성 및 냉각 실험과 유한요소 해석)

  • Seokil Kim;Shin You Kang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Lithium-ion batteries are predominantly employed in electric vehicles and energy storage devices, offering the advantage of high energy density. However, they are susceptible to efficiency degradation when operated at high temperatures due to their sensitivity to the external environment. In this study, we conducted experiments using an indirect cooling method to prevent thermal runaway and explosions in lithium-ion batteries. The results were validated by comparing them with heat transfer simulations conducted through a commercial finite element analysis program. The experiments included single-cell exothermic tests and cooling experiments on a battery pack with 10 cells connected in series, utilizing 21700 lithium-ion batteries. To block external temperature influences, the experimental environment featured an extrusion method insulation in the environmental chamber. The cooling system, suitable for indirect cooling, was constructed with copper tubes and pins. The heat transfer analysis began by presenting a single-cell heating model using commercial software, which was then employed to analyze the heating and cooling of the battery pack.

An e-SAM Approach to the Analysis of Energy Consumption and CO2 Emissions in Korean Industry (환경사회계정행렬(e-SAM)을 이용한 산업활동의 환경 파급효과 분석)

  • Park, Chang-Gui;Lee, Kihoon
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.101-123
    • /
    • 2013
  • This research aims to find out the existence of considerable induced effect that the conventional I-O model cannot. First, we construct an environmental Social Accounting Matrix for Korea by combining statistics on the Korean GDP and I-O with physical data on the fossil energy consumption and $CO_2$ emissions. The impacts of productive activities on fossil energy consumption and $CO_2$ emissions are evaluated by calculating the e-SAM multipliers. By applying decomposition technique further, we get direct, indirect, and induced effects of production activities by industry. The result of decomposing the e-SAM shows that while the direct effect of the electricity industry is large, its indirect effect is very small. In the case of the primary metal industry, both the direct and the indirect influence of this industry were very large. On the contrary, in case of the service industry, the induced effect of fossil energy consumption was as high as 50% of the gross effect. These results suggest that different energy policies should be established for different industries. Also, the findings show the e-SAM model is better than I-O model in analyzing implications of policies on energy use in the economy.

  • PDF

Earlier Metabolizable Energy Intake Level Influences Heat Production during a Following 3-Day Fast in Laying Hens

  • Ning, D.;Guo, Yuming;Wang, Y.W.;Peng, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.558-563
    • /
    • 2013
  • The present study was conducted to estimate energy requirements for maintenance in laying hens by using indirect calorimetry and energy balance. A total of 576 28-wk-old Nongda-3 laying hens with dwarf gene were randomly allocated into four ME intake levels (86.57, 124.45, 166.63 and 197.20 kcal/kg body weight $(BW)^{0.75}$ per d) with four replicates each. After a 4 d adaptation period, 36 hens from one replicate were maintained in one of the two respiration chambers to measure the heat production (HP) for 3 d during the feeding period and subsequent 3 d fast. Metabolizable energy (ME) intake was partitioned between heat increment (HI), HP associated with activity, fasting HP (FHP) and retained energy (RE). The equilibrium FHP may provide an estimate of NE requirements for maintenance (NEm). Results showed that HP, HI and RE in the fed state increased with ME intake level (p<0.05). Based on the regression of HP on ME intake, the estimated ME requirements for maintenance (MEm) was 113.09 kcal/kg $BW^{0.75}$ per d when ME intake equals HP. The FHP was decreased day by day with the lowest value on the third day of starvation. Except for lowest ME intake level, the FHP increased with ME intake level on the first day of starvation (p<0.05). The FHP at the two higher ME intake levels were greater than that at the two lower ME intake levels (p<0.05) but no difference was found between the two lower ME intake levels. Linear regression of HP from the fed state to zero ME intake yielded a value of 71.02 kcal/kg $BW^{0.75}$ per d, which is higher than the extrapolated FHP at zero ME intake (60.78, 65.23 and 62.14 kcal/kg $BW^{0.75}$ per d for the first, second and third day of fasting, respectively). Fasting time, lighting schedules, calculation methods and duration of adaptation of hens to changes in ME intake level should be properly established when using indirect calorimetry technique to estimate dietary NE content, MEm and NEm for laying hens.

Optical Properties of Cdlnsub 2Ssub 4 and Cdlnsub 2Ssub 4 : $CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$Single Crystals ($CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$ 단결정의 광학적 특성)

  • Choe, Seong-Hyu;Bang, Tae-Hwan;Kim, Hyeong-Gon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.296-302
    • /
    • 1999
  • $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ singlecrystals of thenormal spinel structure were grown by the C.T.R. method. The optical energy band structure of these compounds had a indirect band gap at the fundamental optical absorption band edge. The direct and the indirect energy gaps are found to be 2.325 and2.179eV for $Cdln_2S_4$ , and 2.303 and 2.169eV for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ at 5K, respectivly. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region with decreasing temperature, and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The Varshni constants$\alpha and \beta$ of the direct energy gap are given by $13.39{\times}10_{-4}eV/K$ and 509 K for $Cdln_2S_4$ and $29.73{\times}10_{-4} eV/K$ and 1398K for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$. The Varshni constants ${\alpha}and {\beta}$ of the indirect energy gap are given by 9.68${\times}10^{-4}$ eV/K 308K for $Cdln_2S_4$ and $13.33{\times}10_{-4}eV/K$ and 440K for $CdIn_2S_4 : Co^{2+}$ respectivly. The impurity optical absorption peaks due to cobalt dopant are observed in $CdIn_2S_4 : Co^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Co_{2+}$ ions located at $T_d$ symmetry site of $Cdln_2S_4$ host lattece.

  • PDF

A Study on Building Energy Consumption Pattern Analysis Using Data Mining (데이터 마이닝을 이용한 건물 에너지 사용량 패턴 분석에 대한 연구)

  • Jung, Ki-Taek;Yoon, Sung-Min;Moon, Hyeun-Jun;Yeo, Wook-Hyun
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • Data mining is to discover problems in the large amounts of data. Also, data mining trying to find the cause of the problem and the structure. Building energy consumption patterns, the amount of data is infinite. Also, the patterns have a lot of direct and indirect effects. Discussion is needed about the correlation. This work looking for the cause of energy consumption. As a result, energy management can find out the issue. Building energy analysis utilizing data mining techniques to predict energy consumption. And the results are as follows: 1) Using data mining technique, We classified complicated data to several patterns and gained meaningful informations from them. 2) Using cluster analysis, We classified building energy consumption data of residents and analyzed characters of patterns.

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Estimation of Energy Expenditure using Unfixed Accelerometer during Exercise (비고정식 가속도계를 이용한 운동 중 에너지소비 추정)

  • Kim, Joo-Han;Lee, Jeon;Lee, Hee-Young;Kim, Young-Ho;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • In this paper, we proposed a method for estimating energy expenditure using the unfixed axis of the accelerometer. Most studies adopted waist-placement because of the fact that the waist is close to the center of mass of a whole human body. But we adopted pocket-placement, which is capable of using unfixed axis of sensor, that is more convenient than conventional methods. To evaluate the proposed method, 28 male subjects performed walking and running on a motor driven treadmill. All of subject put on the indirect calorimeter and fixed accelerometer, then data were simultaneously measured during exercise. The regression analysis was performed using the test group(n=20) and the regression equation was applied to the control group(n=8). A strong linear relationship between energy expenditure and unfixed accelerometer signal was found. Futhermore, the coefficient of determination was significantly reliable($R^2$=0.98) and showed zero of p-value. The error of energy expenditure estimation between indirect calorimeter and two types of accelerometer was 15.0%(fixed) and 17.0%(unfixed) respectively. These results show the possibilities that the unfixed accelerometer can be used in estimating the energy expenditure during exercise.

U-type Cross-Counter Indirect Evaporative Cooler made of Plastic/Paper (U형 직교 대향류 플라스틱/종이 재질 간접증발소자)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.732-739
    • /
    • 2016
  • In Korea, the summer is hot and humid, and much electricity is consumed for air conditioning. Thus, the simultaneous usage of an indirect evaporative cooler and a common air conditioner could reduce the sensible heat and save electricity. This study developed a U-type cross-counter flow indirect evaporative cooler (IEC) made of plastic and paper. The efficiencies were compared with those of a cross-flow IEC. The specimen was $500mm{\times}500mm{\times}1000mm$. the results show that the indirect evaporation efficiencies of the cross-counter flow sample were 6-21% higher than those of the cross-flow sample. The pressure drops of the cross-counter sample were 51-66% higher. Thermal analysis based on the -NTU method predicted the experimental data within 10%. The electrical energy saved by the use of the cross-counter flow IEC was larger than that of the counter flow IEC, and the difference increases with the velocity. However, the the cross-counter IEC is two times larger than the cross-flow IEC, which may increase the material cost and water usage.