Optical Properties of Cdlnsub 2Ssub 4 and Cdlnsub 2Ssub 4 : $CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$Single Crystals

$CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$ 단결정의 광학적 특성

  • Published : 1999.05.01

Abstract

$CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ singlecrystals of thenormal spinel structure were grown by the C.T.R. method. The optical energy band structure of these compounds had a indirect band gap at the fundamental optical absorption band edge. The direct and the indirect energy gaps are found to be 2.325 and2.179eV for $Cdln_2S_4$ , and 2.303 and 2.169eV for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ at 5K, respectivly. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region with decreasing temperature, and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The Varshni constants$\alpha and \beta$ of the direct energy gap are given by $13.39{\times}10_{-4}eV/K$ and 509 K for $Cdln_2S_4$ and $29.73{\times}10_{-4} eV/K$ and 1398K for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$. The Varshni constants ${\alpha}and {\beta}$ of the indirect energy gap are given by 9.68${\times}10^{-4}$ eV/K 308K for $Cdln_2S_4$ and $13.33{\times}10_{-4}eV/K$ and 440K for $CdIn_2S_4 : Co^{2+}$ respectivly. The impurity optical absorption peaks due to cobalt dopant are observed in $CdIn_2S_4 : Co^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Co_{2+}$ ions located at $T_d$ symmetry site of $Cdln_2S_4$ host lattece.

Keywords

References

  1. Sov. Phys. Semicond v.19 no.2 Wide-gap $A^{II}B_{2}^{III}X_{4}^{VI}$ semiconductor : Optical and Photoelectric Properties, and Potential Applications A. N. Georgobiani;S. I. Radautsan;I. M. Tiginyanu
  2. Solid State Communications v.33 Electronic States of CdIn₂S₄and Other Ⅱ - Ⅲ₂- Ⅵ₄Compound F. Cerrina;C. Quaresima;I. Abbati;L. Braicovich;P. Picco;G. Margaritondo
  3. Phys. Rev. B v.31 Saturation Photoconductivity in CdIn₂S₄ S. Charbonneau;E. Fortin;A. Anedda
  4. Can, J. Phys. v.62 Photoconductivity of Monocrystals of CdIn₂S₄ A. B. Vincent;C. E. Rodriguez;N. V. Joshi
  5. sphys. stat sol. v.(a)62 Photolumonescence of CdInS4 Single Crystals E. Grilli;M. Guzzi;A. V. Moskalnov
  6. phys. stat sol. v.(a)107 Influence of Defect Generation Processes in CdIn₂S₄Single Crystals on the Photoluminescence and Raman Scattering Spectra O. V. Kulikova;L. L. Kulyuk;S. I. Radautsan;S. A. Ratseev;E. E. Strumban;V. E. Tezlevan;V. I. Tsitsanu
  7. J. Phys. Soc. Japan v.44 Optical Absorption of Co-doped CdIn₂S₄ M. Ueno;H. Hisayuki;T. Irie
  8. J. Phys. Chem. Solids v.56 Optical Properties of Undoped and Co-doped CdIn₂Se₄Single Crystals S. H. Choe;B. K. Park;K. S. Yu;S. J. Oh;H. L. Park;W. T. Kim
  9. J. Appl. Phys. v.60 Structural and Optical Properties of $Co_xIn_2S_{3+x}$ Thin Films grown by Spray Pyrolysis Method W. T. Kim;C. S. Yun;H. M. Jung;C. D. Kim
  10. Powder Diffraction File Ron Jenkins
  11. Proc. Phys. Soc.(London) v.57 An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell dimensions of Crystals J. B. Nelson;D. P. Riley
  12. Optical Processes in emiconductors J. I. Pankove
  13. Physica v.34 Temperature Dependence of the Energy Gap in Semiconductors Y. P. Varshni
  14. J. Phys, Soc. Japan v.46 On the Site Symmetry of Co² in CdIn₂S₄ N. Graber;H. J. Wagner;C. F. Schwerdtfger
  15. Crystal Field Theory Thomas M. Dunn