• Title/Summary/Keyword: Inconel

Search Result 411, Processing Time 0.03 seconds

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.20-28
    • /
    • 2012
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. $Al_2O_3$, $Y_2O_3$, and $ZrO_2$, were coated on the material to improve heat resistance, and it was proved from endurance test that $Y_2O_3$ coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

Finite Element Analysis of Eddy Current Testing for Tubes with 3-Dimensional Defects (3차원 관결함에 대한 와전류탐상의 유한요소해석)

  • Lee, Hyang-Beom;Won, Sung-Yean;Shin, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • In this paper, a numerical analysis using the finite element method (FEM) is presented which models the eddy current testing (ECT) of tubes with 3-dimensional defects. For the description of 3-dimensional eddy current problems, the governing equation is derived from the Maxwell's equations. The 3-dimensional FEM formulation with hexahedral elements is carried out using the Galerkin weighted residual method. The INCONEL 600 steam generator tube with inner and outer diameter defects is adopted for the numerical analysis, and the ECT signal, which is the trajectory of the probe impedance, is calculated. For the verification of the numerical analysis method, results of numerical calculations and experiments are compared and they show good agreements. Based on this verification, several defect signals are predicted and their characteristics are investigated with the variation in the defect depth and the circumferential angle of the defect.

  • PDF

Inspection of Heat Exchanger Tubing Defects with Ultrasonic Guided Waves (유도초음파를 이용한 열 교환기 튜브 결함 탐상)

  • Shin, Hyeon-Jae;Rose, Joseph L.;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This study shows the defect detection and sizing capability of ultrasonic guided waves in the nondestructive inspection of heat exchanger and steam generator tubing. Phase and group velocity dispersion curves for the longitudinal and flexural modes of a sample Inconel tube were presented for the theoretical analysis. EDM(Electric Discharge Machining) wears in tubing under a tube support plate and circumferential laser notches in tubing were detected by an axisymmetric and a non-axisymmetric transducer set up, respectively. EDM wears were detected with L(0, 2), L(0, 3) and L(0, 4) modes and among them L(0, 4) mode was found to be the most sensitive. It was also found that the flexural modes around L(0, 1) mode could be used for the detection and sizing of laser notches in the tubing.

  • PDF

Recycling of Safety Check Valves Contaminated with Radioactivity by Chemical Decontamination (化學除染에 의한 逆止밸브의 再使用)

  • 정종헌;최왕규;원휘준;심준보;오원진
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 2001
  • Chemical decontamination techniques have been employed to reuse the high cost check valves contaminated with radioactivity and to reduce the radiation exposure during the inspection and maintenance work of safety injection system containing check valves. After chemical decontamination, an ultrasonic treatment was conducted to remove the fine solid particles retained in the crevices of check valves. The decontamination process conditions and the amount of chemical reagents were determined from the results of a pre-test, using the (list arm holder. The decontamination factors (DF), estimated from the activity in the solution, ranged from 14.5 to 18.5 corresponding to the activity removal of 93-95ft. The corrosion test data indicated that the general corrosion rate during a chemical decontamination-ultrasonic treatment process are low for type 304 S tainless steel, Inconel -600 and Stellite-6 materials $ (2.1\times10^{-2}$ $6.0\times10^{-2}$ and$ 1.7\times10^{-2}$ mil, respectively).

  • PDF

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.

A Study on the Structural Integrity Considering the Installation of a Micro-tube Heat Exchanger (미세튜브 열교환기의 장착을 고려한 구조건전성에 관한 연구)

  • Oh, Se Yun;Kim, Tae Jin;Cho, Jong Rae;Jeong, Ho Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.447-451
    • /
    • 2015
  • The objective of this study is to predict the structural characteristics of a heat exchanger mounted on an aircraft engine using finite element analysis. The plastic fracture and life of the heat exchanger were estimated by a thermo-mechanical analysis. Tensile tests were conducted under high temperature conditions (700, 800, 900, 1000 K) using five specimens to obtain the mechanical properties of the Inconel 625 tubes. To assess the structural characteristics of the heat exchanger, the full and partial models were applied under the operating conditions given by the thermo-mechanical and inertial load. As a result, the case, tubesheet, flange, and mounting components have a reasonable safety margin to the allowable stress assuming a fatigue strength of Inconel 625 of 10000 cycles under 1000 K.

Variation of Tensile Strength by Addition of Y2O3 and Effect of Aging Treatment in Ni Base Alloy Fabricated by MA Method (MA법으로 제조된 Ni기 합금에서 Y2O3 첨가에 따른 인장강도변화와 시효처리 효과)

  • Kim, Il-Ho;Lee, Won-Sik;Ko, Se-Hyun;Jang, Jin-Man;Kwun, Sook-In
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • Ni-20Cr-20Fe-5Nb alloy with or without $Y_2O_3$ was manufactured by mechanical alloying process and consolidated by spark plasma sintering (SPS). The grain size of the alloy with $Y_2O_3$ was smaller than that of alloy without $Y_2O_3$ which results from the effect of $Y_2O_3$ suppressing grain growth. The tensile strength at room temperature was increased by the addition of $Y_2O_3$ but decreased abruptly at temperature above $600^{\circ}C$. It seems to result from the change of deformation mechanism due to fine grain size, that is, grain boundary sliding is predominant at above $600^{\circ}C$ while internal dislocation movement is predominant at below $600^{\circ}C$. After conventional heat treatment process of solution treatment and aging, a small amount of ${\delta}(Ni_3Nb)$ phase was formed in Ni-20Cr-20Fe-5Nb alloy while a large amount of ${\gamma}"(Ni_3Nb)$ was formed in Inconel 718 in the previous report. This is due to exhaustion of Nb content by the formation of NbC during consolidation.

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Storability and Material Compatibility Test of Blended Hydrogen Peroxide Propellant (블렌딩 기법을 적용한 과산화수소 추진제의 저장성 및 재료 적합성 평가)

  • Lee, Jeong-Sub;Jang, Dong-Wuk;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.150-158
    • /
    • 2011
  • Blending method was applied to increase the performance of hydrogen peroxide which is called green propellant. 90 wt.% hydrogen peroxide was blended with ethanol which is less toxic fuel, and there was no storability decrease due to fuel addition. Inconel X750 and Tophet A showed good compatibility and high heat resistance, and SUS 316L was compatible. Al2O3, Y2O3, and ZrO2, were coated on the material to improve heat resistance, and it was proved from endurance test that Y2O3 coating is not suitable and adhesive strength between coating and material is related with allowable temperature of material. Thruster test was performed to confirm the performance increase by blending method, and chamber temperature was $870^{\circ}C$ which is higher than $760^{\circ}C$ that is adiabatic chamber temperature of 90 wt.% hydrogen peroxide.

  • PDF