DOI QR코드

DOI QR Code

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing

적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향

  • Choe, Jungho (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yun, Jaecheol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Dong-Yeol (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yang, Sangsun (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Yu, Ji-Hun (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Chang-Woo (Metal 3D Printing Convergence Research Team, Korea Institute of Machinery & Materials (KIMM)) ;
  • Kim, Yong-Jin (Powder & Ceramics Division, Korea Institute of Materials Science (KIMS))
  • 최중호 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 윤재철 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양동열 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 양상선 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 유지훈 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부) ;
  • 이창우 (한국기계연구원, M3P 융합연구단) ;
  • 김용진 (한국기계연구원 부설 재료연구소, 분말/세라믹연구본부)
  • Received : 2017.05.25
  • Accepted : 2017.06.09
  • Published : 2017.06.28

Abstract

Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Keywords

References

  1. W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff and S. S. Babu: Int. Mater. Rev., 61 (2016) 315. https://doi.org/10.1080/09506608.2015.1116649
  2. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371. https://doi.org/10.1016/j.actamat.2016.07.019
  3. W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath and S. A. Khairallah: Mater. Sci. Technol., 31 (2015) 957. https://doi.org/10.1179/1743284714Y.0000000728
  4. C. Qiu, C. Panwisawas, M. ward, H. C. Basoalto, J. W. Brooks and M. M. Attallah: Acta Mater., 96 (2015) 72. https://doi.org/10.1016/j.actamat.2015.06.004
  5. R. Dayal and T. G. Roisman: Int. J. Therm. Sci., 113 (2017) 38. https://doi.org/10.1016/j.ijthermalsci.2016.11.014
  6. M. Markl and C. Korner: Annu. Rev. Mater. Res., 46 (2016) 93. https://doi.org/10.1146/annurev-matsci-070115-032158
  7. G. Tapia, A. H. Elwany and H. Sang: Additive Manuf., 12 (2016) 282. https://doi.org/10.1016/j.addma.2016.05.009
  8. L. N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa and M. M. Attallah: Matter. Sci. technol., 32 (2016) 657.
  9. G. Kasperovich, J. Haubrich, J. Gussone and G. Requena: Mater. Des., 105 (2016) 160. https://doi.org/10.1016/j.matdes.2016.05.070
  10. C. Korner: Int. Mater. Rev., 61 (2016) 361. https://doi.org/10.1080/09506608.2016.1176289
  11. U. S. bertoli, A. J. Wolfer, M. J. Matthews, J. P. R. Delplanque and J. M. Schoenung: Mater. Des., 113 (2017) 331. https://doi.org/10.1016/j.matdes.2016.10.037
  12. K. G. Prashanth, S. Scudino, T. Maity, J. Das and J. Eckert: Mater. Res. Lett., (2017) 1.
  13. N. Kurgan: Mater. Des., 55 (2014) 235 https://doi.org/10.1016/j.matdes.2013.09.058
  14. W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E. Hahn, C. Kamath and A. M. Rubenchik: J. Mater. Process. Technol., 214 (2014) 2915. https://doi.org/10.1016/j.jmatprotec.2014.06.005
  15. R. Rai, J. W. Elmer, T. A. Palmer and T. Debroy: J. Phys. D: Appl. Phys., 40 (2007) 5753. https://doi.org/10.1088/0022-3727/40/18/037
  16. T. Ding, S. Zhang, Y. Wang and X. Zhu: Int. J. Adv. Manuf. Technol., 51 (2010) 45. https://doi.org/10.1007/s00170-010-2598-2
  17. H. Yan, J. Hua and R. Shivpuri: Sci. Technol. Adv. Mater., 6 (2005) 540. https://doi.org/10.1016/j.stam.2005.04.002
  18. A. Kermanpur, N. Varahram, P. Davami and M. Rappaz: Metall. Mater. Trans. B, 31 (2000) 1293. https://doi.org/10.1007/s11663-000-0017-z
  19. X. M. Li, J. Y. Zhang, B. Wang, Z. M. Ren and G. Z. Zhou: J. Cent. South Univ. Technol., 18 (2011) 23. https://doi.org/10.1007/s11771-011-0653-2
  20. M. Cloots, P. J. Uggowitzer and K. Wegener: Mater. Des., 89 (2016) 770. https://doi.org/10.1016/j.matdes.2015.10.027

Cited by

  1. A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process vol.25, pp.2, 2018, https://doi.org/10.4150/KPMI.2018.25.2.137
  2. Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting vol.25, pp.6, 2018, https://doi.org/10.4150/KPMI.2018.25.6.475