DOI QR코드

DOI QR Code

A Study on the Structural Integrity Considering the Installation of a Micro-tube Heat Exchanger

미세튜브 열교환기의 장착을 고려한 구조건전성에 관한 연구

  • Oh, Se Yun (Dept. of Mechanical Engineering, Korea Maritime and Ocean Univ.) ;
  • Kim, Tae Jin (Dept. of Mechanical Engineering, Korea Maritime and Ocean Univ.) ;
  • Cho, Jong Rae (Dept. of Mechanical Engineering, Korea Maritime and Ocean Univ.) ;
  • Jeong, Ho Sung (PNU &Rolls-Royce Univ. Technology Center, Pusan Nat'l Univ.)
  • 오세윤 (한국해양대학교 기계공학부) ;
  • 김태진 (한국해양대학교 기계공학부) ;
  • 조종래 (한국해양대학교 기계공학부) ;
  • 정호승 (부산대학교 Rolls-Royce 대학기술센터)
  • Received : 2015.01.22
  • Accepted : 2015.02.21
  • Published : 2015.04.01

Abstract

The objective of this study is to predict the structural characteristics of a heat exchanger mounted on an aircraft engine using finite element analysis. The plastic fracture and life of the heat exchanger were estimated by a thermo-mechanical analysis. Tensile tests were conducted under high temperature conditions (700, 800, 900, 1000 K) using five specimens to obtain the mechanical properties of the Inconel 625 tubes. To assess the structural characteristics of the heat exchanger, the full and partial models were applied under the operating conditions given by the thermo-mechanical and inertial load. As a result, the case, tubesheet, flange, and mounting components have a reasonable safety margin to the allowable stress assuming a fatigue strength of Inconel 625 of 10000 cycles under 1000 K.

본 연구의 목적은 유한요소 해석을 이용하여 항공기 엔진에 장착된 미세 튜브형 열교환기의 작동하중에 대한 특성을 파악하고 구조안전성을 평가하는 것이다. 작동 하중은 열-기계하중이 고려되었다. 항공기 엔진 부품의 특수성으로 인하여 구조적 강성확보뿐만 아니라 고효율, 저중량, 최소체적을 만족하는 형상 설계가 요구 된다. 브레이징한 미세튜브의 기계적물성치 확보를 위해 고온 인장 실험을 수행하였다. Ansys 12.1의 자체 모델러를 이용하여 형상을 모델링하고 유한요소해석을 수행하였다. 열-구조 연성해석을 통하여 튜브를 제외한 모듈형(modular type) 열교환기에 대한 설계방법을 제시하고 구조적 건전성을 평가하였다.

Keywords

References

  1. McDonald, C. F. and Wilson, D.G., 2007, "The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century," Applied Thermal Engineering, Vol. 16, pp. 635-653.
  2. Jeong, J. H., Kim, L. S., Lee, J. K., Ha, M. Y., Kim, K. S. and Ahn, Y.C., 2007, "Review of Heat Exchanger Studies for High-Efficiency Gas Turbines," ASME Turbo Expo, GT-2007-28071, Vol. 4, pp. 833-840.
  3. Schonenborn, H., Ebert, E., Simon, B. and Storm, P., 2004, "Thermo-Mechanical Design of a Heat Exchanger for a Recuperative Aero Engine," ASME Turbo Expo, GT-2004-53696, Vol. 6, pp. 187-193.
  4. Song K. N, Hong S. D. and Park H. Y., 2011, "High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV)," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 10, pp. 1249-1255. https://doi.org/10.3795/KSME-A.2011.35.10.1249
  5. Oh S. Y., 2015, "A Study on Structural Integrity in Consideration of Aero Heat Exchanger Mounting," Korea Maritime and Ocean University, Theses for master's degree.
  6. Kang S. H., Park S. H., Min J. K., Jeong H. S. and Son C. M., 2013, "Analysis of two-way Fluid-Structure Interaction and Local Material Properties of Brazed Joints for Estimation of Mechanical Integrity," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 1, pp. 9-16. https://doi.org/10.3795/KSME-A.2013.37.1.009
  7. www.specialmetals.com, "Material Properties of Inconel Alloy 625," Special Metals Corporation.