• Title/Summary/Keyword: Incompressible

Search Result 1,068, Processing Time 0.025 seconds

An Incompressible Flow Computation using a Multi-level Substructuring Method (다단계 부분 구조법에 의한 비 압축성 유동 계산)

  • Kim J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.83-90
    • /
    • 2004
  • Substructuring methods are usually used in finite element structural analyses. In this study a multi-level substructuring algorithm is developed and proposed as a possible candidate for incompressible fluid solves. Finite element formulation for incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et.al.[5]. The present algorithm consists of four stages such as a gathering stage, a condensing stage, a solving stage and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At highest level, each subdomain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each subdomain has been replaced by a sequential static condensation. The global algebraic system arising feom the assembly of each subdomains is solved using Conjugate Gradient Squared(CGS) method. In this case, pre-conditioning techniques usually accompanied by iterative solvers are not needed.

  • PDF

An Incompressible Flow Computation by a Hierarchical Iterative Preconditioning (계층적 반복의 예조건화에 의한 비압축성 유동 계산)

  • Kim J. W.;Jeong C. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.91-98
    • /
    • 2004
  • In two dimensional incompressible flows, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a stabilized finite element formulation. The stabilization has been peformed by a modified residual method proposed by Illinca et. al.[3]. The stabilization which is necessary to escape from the LBB constraint renders an equal order formulation. In this paper, we increased the order of interpolation whithin an element up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flow showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

  • PDF

AN IMPLICIT NUMERICAL SCHEME FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON CURVILINEAR GRIDS

  • Fayyaz, Hassan;Shah, Abdullah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.881-898
    • /
    • 2018
  • This article deals with implementation of a high-order finite difference scheme for numerical solution of the incompressible Navier-Stokes equations on curvilinear grids. The numerical scheme is based on pseudo-compressibility approach. A fifth-order upwind compact scheme is used to approximate the inviscid fluxes while the discretization of metric and viscous terms is accomplished using sixth-order central compact scheme. An implicit Euler method is used for discretization of the pseudo-time derivative to obtain the steady-state solution. The resulting block tridiagonal matrix system is solved by approximate factorization based alternating direction implicit scheme (AF-ADI) which consists of an alternate sweep in each direction for every pseudo-time step. The convergence and efficiency of the method are evaluated by solving some 2D benchmark problems. Finally, computed results are compared with numerical results in the literature and a good agreement is observed.

3-D Incompressible Viscous Flow Analysis Around A Rotor-Stator with Rotor-Stator Interaction (로터-스테이터 상호작용을 고려한 3차원 유동 해석)

  • Kim K. H.;Jung Y. L.;Park W. G.;Lee S. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.78-83
    • /
    • 2000
  • An iterative time marching procedure for solving incompressible internal flow has been applied to the flow around a rotor-stator. This procedure solves three-dimensional incompressible Reynolds-averaged Navier-Stokes equation on a moving, time-deforming, non-orthogonal body-fitted grid using second-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. To handle rotationg geometry, the multiblock technique is applied and the overall flow domain is subdivided into two blocks. In each block, a grid is generated and flowfield is solved independently of the other blocks. The boundary data for each block is provided by the neighboring blocks using bilinear interpolation technique.

  • PDF

EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS INCOMPRESSIBLE FLUIDS WITH VACUUM

  • Cho, Yong-Geun;Kim, Hyun-Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.645-681
    • /
    • 2008
  • The Navier-Stokes system for heat-conducting incompressible fluids is studied in a domain ${\Omega}{\subset}R^3$. The viscosity, heat conduction coefficients and specific heat at constant volume are allowed to depend smoothly on density and temperature. We prove local existence of the unique strong solution, provided the initial data satisfy a natural compatibility condition. For the strong regularity, we do not assume the positivity of initial density; it may vanish in an open subset (vacuum) of ${\Omega}$ or decay at infinity when ${\Omega}$ is unbounded.

An experimental study of Incompressible time based mass flow controller (비압축성 시간식 질량유량계의 특성에 관한 연구)

  • Chang, Young-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.55-58
    • /
    • 2008
  • The objective of this research is to design, manufacture and test a mass flow controller capable of measuring compressible as well as incompressible fluid flows based on a 'bucket and stop-watch' method. The basic principle behind such a system is the measurement of time, where the time taken to fill and empty a bucket of known volume is measured. This device should be able to handle fluid flows in the range of 0.1 ml/min to 10 ml/min within an accuracy of ${\pm}$1%. For the flow meter to be able to compete with established designs, it must be not only comparable in cost and robustness, but also very accurate and reliable as well.

  • PDF

Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method (원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의)

  • Park, Ki-Doo;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim J.;Kim Y.M;Maeng J.S
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF

Higher Order Wall Boundary Conditions for Incompressible Flow Simulations

  • Nishida Hidetoshi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.61-62
    • /
    • 2003
  • In this paper, the new higher order wall boundary conditions are proposed for solving the incompressible flows. The square driven cavity flows are simulated by using the variable order method of lines with the present wall boundary conditions. The variable order method of lines is constructed by the spatial discretization, i.e., the variable order proper convective scheme for convective terms and the modified differential quadrature method for diffusive terms, and time integration. The 2nd, 4th, and 6th order solutions are presented and these results show this higher order boundary conditions are very promising for the incompressible flow simulations.

  • PDF

A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES (안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석)

  • Ahn, Hyung-Taek;Rasool, Raheel
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF