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EXISTENCE RESULT FOR HEAT-CONDUCTING VISCOUS
INCOMPRESSIBLE FLUIDS WITH VACUUM

YONGGEUN ("HO AND HYUNSEOK KiMm™

ABsTRACT. The Navier-Stokes system for heat-conducting incompress-
ible fluids is studied in a domain  C R3. The viscosity, heat conduction
coefficients and specific heat at constant volume are allowed to depend
smoothly on density and temperature. We prove local existence of the
unique strong solution, provided the initial data satisfy a natural com-
patibility condition. For the strong regularity, we do not assume the
positivity of initial density; it may vanish in an open subset (vacuum) of
(2 or decay at infinity when € is unbounded.

1. Introduction

The governing system of eguations for a heat-conducting viscous incom-
pressible fluid is the following Navier-Stokes system of the scalar or vector
fields p(t,z),u(t,z) and é(¢t.r) for (¢,2) € (0,7) x @ C R, x R® (see P. L.
Lion’s book [19]):

(1) divu = 0,

(2) p -+ div (pu) = 0,

(3) (pu)y + div (pu & u) — div (2pdu) + Vo = pf,
(4) c, ((p0)¢ + div (puf)) — div (V) = 2u|dul? + ph.

We consider the system (1)-(d) supplemented with the initial and boundary
value conditions:
(anaQ)h:O — (PO:UO:SO) in Qa
(5) (u,8) = (0.0) on 00 x[0,7T],
(p(t,x),ult,x),8(t.x)) = (0.0.0) as |x| = oc, (t,z) € (0,T) x Q.

Here we denote by p, u, p and 6 the unknown density, velocity, pressure and
temperature fields for the fluid, respectively. The equations (1), (2), and (3)
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imply the incompressibility, mass conservation, balance of momentum, respec-
tively, for the fluid, while (4) is derived from the balance of energy

(pe)s + div (peu) — div(kV8) = 2u|dul|® + ph

by using the relationship ¢, = g%, where ¢ = e(p,#) is the internal energy.

We also denote by du the deformation tensor 3(Vu + V'u), where Vu is the

gradient matrix (gi:;) of u and V?u its transpose. We assume that the viscosity

coefficient p == u(p, 8), specific heat at constant volume ¢, = ¢,(p, ) and heat
conductivity & = k(p,0) are positive functions of p and 8. The known fields
f and h denote a given external force and heat source per unit mass. Finally,
(0,T) x €2 is the time-space domain for the evolution of the fluid, where T is
a finite positive number and € is either a bounded domain in R3 with smooth
boundary or an unbounded domain such as the whole space R? and an exterior
domain with smooth boundary.

Throughout this paper, we adopt the following simplified notations for ho-
mogeneous ard inhomogeneous Sobolev spaces in {2:

L' = L'(Q), D" ={ve L ():vpe <0}, [|v]prr =|V*0|L-,

D} = {velL®Q): lvlpy < oo and v =0 on N}, |v|p1 = |Vv|Le,
D}, = {veDj:divv=0inQ}, D*=Dk* WhT=L"nD"",

H* = wW*2? H;j=L*nDj and H},=L*NDg,.

We also denote by H, ' and D * the dual space of Hy , and Dy ,, , respec-
tively, with (-,-) being the corresponding dual paring. A detailed study of
homogeneous Sobolev spaces may be found in the book [10] by G. Galdi.

In this paper, we assume that the fluid flow governed by (1)-(4) may have
non-negative initial density. That is to say, we consider the incompressible fluid
with an initial vacuum, which is a spatial domain whose interior is non-empty
and in which the density of fluid vanishes identically. Thus from the continuity
equation (2), we can observe that the vacuum may evolve as time goes on
and then the parabolicity of the momentum equation (3) comes disappeared
at any vacuum state. As a consequence, we cannot expect directly any high
regularity or uniqueness from (3). To avoid this difficulty, it is necessary to
introduce a suitable compatibility condition which shows how the initial fluid
should behave near the vacuum.

For global existence of weak solution to the problem (1)-(3) and (5), one
may assume the condition \/pgug € L*. See [15, 23, 25] for the case of constant
viscosity coeflicient and [19] for density-dependent case. But the uniqueness is
still open even in two dimensional case.

As for strong solutions to the problem (1)-(3) and (5), H. Kim and H. J.
Choe [8] used the condition

(6) —uAug + Vpg = p(-,%g and divug =0 in €
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for some (pg,g) € H! x L? and they proved existence of unique local strong
solutions for the case of constant viscosity coefficient in bounded domains or
the whole space. In case of density-dependent viscosity, Y. Cho and H. Kim
[6] used the condition

(7) — div(2u(pg)dug) + Vpg = pég and divug =0 in Q

for some (pg,g) € H' x L?. They also obtained the uniqueness and strong
solvability for two or three-dimensional bounded domains. It should be noted
that (6) or (7) turns out to be necessary and sufficient for the strong regular-
ity. For other related topic to the vacuum, one can refer to [9, 21, 22], etc.
Regarding the initial density with a positive lower bound, we refer the readers
to [4, 13, 14, 18, 20] and the references therein.

If the temperature equation (4) is under consideration, the situation is more
complicated. The coupling between (3) and (4) is deepened by the vacuum
even in the case of constant coefficients. Thus we have to consider the relation
between initial density and temperature as well as velocity near the vacuum.
The authors in [7] first treated the problems with temperature equation for
the polytropic compressible Huid with constant coefficients and vacuum, and
suggested a compatibility condition similar to (8) below to prove existence of
unique strong solutions. However, up to now, there have been few results on the
uniqueness and regularity of heat-conducting incompressible or compressible
Navier-Stokes equations with nonconstant coeflicients. For the weak solvability
to the problem (1)-(5), see the result of P.-L. Lions in Chapter 3 of [19]. For
another related topic, we refer the readers to [2] in which unique solvability is
studied under a small data condition and uniform density condition but with
coefficients depending on du and 6.

In this paper, we study strong solutions to the initial boundary value problem
(1)-(5) with initial vacuum and with slightly modified coefficients. We also
consider minimal regularity of strong solutions in Sobolev sense. To do these,
we first assume the natural extension of compatibility condition (7) to the
heat-conducting case as follows

A E , e o -‘l?
) div (2pedug) - Vpo.) Po 91 in Q
_div (f{_o VGO) -— 2/_L0|(1”0|H — [)5 g2

for some pg € H' and (g1, ¢2) € L?. Furthermore we assume that

0<jt,cn, 6 € CHR?,

(9)
p=pulp,pd), co=culp,pb), &==r(p,pb)

for nonconstant coefficients. The following is our main result.
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Theorem 1.1. Assume that the data (po,ug, 80, h, f) satisfies the reqularity
condition

po>0, po€L2NH'NWY1, (ug,8y) € DiND?, divuy =0,
(h, f) € C([0, T}, L) N L*([0, T); LY)  and (R, fo) € L*(0,T; H™)

for some 3 < q < 6. Further assume the compatibility condition (8) and coeffi-
cient condition (9). Then there exist a small time T, > 0 and a unique strong
solution (p,u.p,0) to the initial boundary value problem for (1)-(5) such that

pe C(0,T.; L2 nH' nWh9), p, € C([0,T.); L3 N LY),
(u,0) € C([0,T.,); D N D*) N L*(0,T,; D*9),
pe C(0,T.;H') n L*(0,T., W™ 1)
(ug,0;) € L2(0,Tw; DY)  and  (/pus, /pb:) € L°(0,Ty; L?).

Adopting the arguments used in [5, 6, 8], one can easily show that the
compatibility condition (8) also turns out to be necessary and sufficient for
the strong regularity (10). The condition (9) is used to avoid some technical
difficulties in estimating fot |t|% s ds and |p — po| L=, which appear in the basic
energy estimates and are crucial in finding the local existence time. See Section
3 below. Until now, we don’t know whether the condition (9) is inevitable or
not. It seems to be hard to remove the condition (9) in the presence of vacuum
but worth while to try. But in case when p has a positive lower bound, one
can assume that the coefficients are functions of p and # not of pé.

The condition Lz N H! for initial density is necessary to prove the existence
and uniqueness in case of unbounded domains. See Section 4 below. In partic-
ular, the L3 -condition is used for the regularity of the solution to the Stokes
problem

(10)

—div2udu) + Vp=F, divu =0 in £,

where F' = pf — pu; — pu- Vu (see Section 2 below). For the regularity of (u, p),
we need F € D! the dual of Dy , and hence pu; € D;'. Since we assume
the initial vacuum in an unbounded domain, we cannot expect u; € L? but
in general u; € D%,g. Therefore L3-condition is necessary. Furthermore, for
higher regularity of solution of the above Stokes system (at least D? regularity
for (u,f) is necessary), it is inevitable to show that the density is W' ¢ and
hence W9 condition for initial density is imposed. For the details, see the
proof of Proposition 2.8 below.

This paper is organized as follows. In Section 2, we show a new Sobolev
embedding result and some regularity results for the solutions of linear trans-
port equation, stationary Stokes and elliptic equations. In Section 3, we prove
a priori estimates for linearized problems under the assumptions that the ini-
tial density has positive lower bound and the domain is bounded. We show
that the estimates are independent of the lower bound and the size of domain.
In Section 4, we prove Theorem 1.1 by using the standard domain expansion
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and iteration of solutions to the linearized problems as mentioned in Section 2,
which are possible thanks to the uniformity of a priori estimates on the lower
bound of initial density and the size of domain.

The methods mentioned above can be applied directly to the compressible
model with momentum (3) and energy (4) equations replaced by

p = p(p; ph),

(pu): + div(pu ® u) — div(2udu) — V(Adivu) + Vp = pf,
cy ((pB): + div (pub)) + (ve,.pf — p)divu — div (kVH)

= 2u|dul® + A(divu)® + ph.

The factor ve,pd — p follows from a result of the first law of thermodynamics

law pg-g% = p — aKyf and the relation a = ——% (%g)p = £, where a is

the thermal expansion coefficient and K4 is the isothermal bulk modulus. The
viscous coefficients satisfy the Stokes relation u + A = ap for some positive
number a. The application for this model is possible because combining the
regularity results of Lamé system (see Section 5 of [5]) with the Stokes like
relation above, one can verify the regularity results like Lemma 2.8 below in
which some estimates independent of the size of domain are shown. In the case
of the bounded domain we can remove the Stokes relation. We will however not
present here the details of results on the above problem. Without Stokes like
relation, it is much difficult to handle more general compressible fluids in an
unbounded domain because it is hard to derive an elliptic estimate independent
of the size of domain. This will be very interesting problem to try.

2. Preliminary results

Let €2 be a bounded domain, an exterior domain or the whole space, and let
us define

rEJQ

sup || + 2 if 9 is nonempty,
(11) Ry = Ro(Q?) = . ,
3 if 0f1 is empty

and
Qp={ze€:|z] <R} for 2Ry < R < 0.

Note that Qgr = Q if  is bounded or R = oc, and g is the intersection of an
unbounded domain 2 and the open ball B = Bg(0) otherwise.

In this section, we derive some estimates in 2 which are independent of the
radius R. These results will be crucial technical tools in proving our main theo-
rem for unbounded domains via the method of domain expansions. Throughout
the paper, we adapt the following notations for the sake of conciseness. For
(semi)-normed spaces X and Y, we define

Clxny = x4 |y
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Moreover, for a mapping F from X into a space Y’ with Y C Y’, we mean by
the inequality

(12) | Faly < Clz|x
that if z € X, then Fx € Y and (12) holds for some C' independent of z.
2.1. Sobolev embedding results

First we prove fundamental embedding inequalities for Sobolev spaces, which
are referred in this paper to Sobolev inequalities.

Lemma 2.1. Assume that 2Ry < R< o0 and 3 < g < 00. Then

(13) ulLsar) < Clulpi(ag):

(14) [ulo@r) < Clulan@n), Ul ooz o < Clulwrog)
and

(15) |U|Oo.1-g(-§R) < Clulpi(ar)npra(@r)-

Here C denotes a positive constant depending only on q and §Q but independent
of R and for 0 < a < 1, C%*(QR) is the Holder space consisting of all scalar
(or vector) fields u in Q0g such that

< 0.

_ u(z) — u(y)|
|U|CO’Q(QR) a :cSEUQpR ule)] + w,yE%uRI?w#y |z —yl|*
Proof. The first inequality (13) is an immediate consequence of the correspond-
ing Sobolev embedding inequality in the whole space because C° (1) is dense
in D{(Qr); see Theorem 6.1 in {10, Chapter II]. Moreover, since Qg satisfies
the cone condition uniformly on R, it follows from classical Sobolev embedding
results (see [1, Chapter 5] for instance) that

[ulrsr) < Clulrier) and  |ulgg,) + |u|00,1_%(§ < Clulwraag)-

2R0)

Hence in order to prove (14), we have only to show that if u € W19(Qg), then

3

(16) Iu(a:]_) — U(mz)l S CIVUILQ(QR)Iml — T9 1 g

for 1,29 € Br \ B%RO with |27, — 22| < 1. Let us denote

r = |21 — @) and T = oLt To
2 B 2
Then since the set B.(Z) N Bg is convex,
1 1
diam(B,(Z) N Bg) = 2r and |B,(Z)N Bg| > -2-|B,.(f)| = §7r'r3,

it follows from Lemma 7.16 in [12] that

16

(17) u(e) - wp, mns] < / IVu(y)||z — =% dy
3T JB,.(z)NBr
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for all x € B, () N B, where

U = uly) dy.
B (D08 T TR ﬁBRJ/ i (y) dy

By virtue of Holder inequality, we deduce that if € B,.(F) N By, then

q=1

. _ _2q ?
/ Va()lz -y dy < |Suloern, / oy dy
BT‘(E)HBR B'zr(l’)

3
< CIVu|pagapr "7

Combining this and (17), we have

u(z1) = u(@s)] < Juler) =@l + Ju(zz) ~ 4| < C|Vulpa@pr' ™7,

which implies (16) and thus the second inequality (14).
It remains to prove the last inequality (15). Let u € D} (Qg) N DY(QR).
Then defining @ by

u=u in lp and TW=0 outside (p,

we easily show that 7 € D!(R?*) N DY 9(R3) and Vi = 0 a.e. in R3 \ Qg.
Hence adapting the proof of (16), we deduce the classical result due to Morrey
that @ is Holder continuous in R3 with exponent a = 1 — -3— and

(18) a(z) —u(y)| < CIV?I[“ roylr —y|* for xz,ye R
Moreover, it follows from (17) with » =1 and R = oc that

[a(z)| < C / )ldy +C Va(y)llz —y|™* dy

By(r) Bi(z)

for all z € R3. Hence in view of Holder inequality again, we have
(19) @(e)l < C ([Tlroimy e + [Vl Le(pyay) for z€R.
Now the inequality (15) follows immediately from (18), (19), and (13). This
completes the proof of Lemma 2.1. i

2.2. A linear transport equation
Let us consider the following linear hyperbolic problem
(20) pe +div(pr) =0 in (0,T)x Qg and p(0)=p in g,
where v is a known vector field in (0,7) x Qi such that
v € C([0,T]; Do(Qr) N D*(QR)) N L*(0,T; D*(S2R))

for some 3 < g < 6. Here it should be noted that v need not be divergence-free
in (0,7) x Qg. Using exactly the same arguments as in [7], we can prove the
following existence and regularity results.
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Lemma 2.2. Assume that
po € L(Qp) N HY Q)N WHYQR) and po >0 in Qg

Then
(i) there exists a unique solution p to the problem (20) such that

p € C([0,T}; L% (Qr) N H (Qg) N WH(QR)),

(ii) the solution p satisfies the following estimate
|p(t)lL%(QR)ﬂHl(QR)ﬂwl’q(QR) S |p0lL%(QR)ﬂHl(QR)ﬂwl’q(QR)

t
X exXp (C’/ IVu(s)| i1 (@n)nDla(or) ds)
0

for 0 <t <T and finally,
(iii) the solution p is represented by the formula

(21) p(t,z) = po(U(0,t,z) ) exp {—/0 div v(s, U(s,t,m))dsJ :

where U € C([0,T] x [0,T] x Qr) is the solution to the initial value problem

{ 2U(t,s,7) =v(t,U(t,s,2)), 0<t<T,

(22) U(s,s,x) =z, 0<s<T, z€0p.

Remark 2.3. It follows immediately from the equation in (20) that
pe € C((0,T}; L* (Qr) N LU(QR)).

Proof. The lemma except the result (ii) has been well-known in case when 2p
is a bounded domain: see [26] for instance. A very related estimate to that in
(ii) was obtained in [5, 7] by means of a standard energy method. Moreover
the case of unbounded domains can be reduced to that of bounded domains
using a regularization technique and a cut-off technique. We omit its detailed
proof of the lemma and refer the readers to our previous papers [5, 7]. O

2.3. The nonhomogeneous Stokes equations

Next, we consider the boundary value problem for the nonhomogeneous
Stokes equations

(23) —div(2udu) + Vp=F, divu=0 in (pg,

(24) u=0on 00r and wu(x) =0 as |z|] = o0, z € QR,
where F' and p are known vector and scalar fields in 2z such that
(25) FeDYQg), pputeLl®(Qp)
for some constants p and g with 0 < u <1 < 7.

By weak solutions to the problem (23) and (24), we mean either

and p<pu<E in Qg
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Definition 2.4. A vector field u € D{_,(Qr) is a weak solution to the bound-
ary value problem (23) and (24) provided that

(26) /Qudu cdvdx = (F,v) forall ve Dé,a(QR)
or

Definition 2.5. A pair (u,p) € Dj ,(Qgr) x L§(€2g) of vector and scalar fields
in g is a weak solution to the boundary value problem (23) and (24) provided
that

(27) /2pdu rdvdr — /pdivvd.:c = (F,v) forall ve Dy(QR).
Here the space L(Qpr) is defined by

L2(Qp) = {p € L*(Qr) : [, pdz = 0} if Qr is bounded,
R) = .
° L*(Qp) otherwise.

These two definitions are actually equivalent. If (u, p) € D§ ,(Qr) x LE(QR)
is a weak solution to (23) and (24) in the sense of Definition 2.5, then it is
obvious that u is a weak solution in the sense of Definition 2.4. The converse
is an immediate consequence of the following result.

Lemma 2.6. Let u € D§ ,(Qr) be a weak solution to the problem (23) and

(24) in the sense of Definition 2.4. Then there exists a unique scalar field
p € Li(QR) such that (u,p) is a weak solution to (23) and (24) in the sense of
Definition 2.5. This field p is colled the pressure associated with u.

Proof. Let us define a bounded linear functional F on D§(Qg) by
(28) F(v) = /Zpdu cdvdr — (F,v) forall ve Dj(Qg).

Then since F vanishes identically on Dj (Q2g), it follows from Theorem 5.2
and Corollary 5.1 in [10, Chapter III] that there exists a unique scalar field
p € LZ(Qg) such that

(29) F(v) = /pdivvd;f: for all v € D5(QRr).

Note that the statement (29) holds if and only if (u,p) satisfies (27). This
completes the proof of Lemma 2.6. L]

The existence of a unique weak solution to the problem (23) and (24) can
be easily proved using the Riesz representation theorem and Lemma 2.6. In
fact, the left hand side of (26) defines an inner product on the Hilbert space
Dé,J(QR) because ‘dU‘L'z(QR) pa— IV’I)I]J?(QR) = |U|Dé,g(QR) for all v € Dé,a(QR).
Hence by virtue of the Riesz representation theorem, we deduce the existence
of a unique weak solution u € D ,(Q2x) in the sense of Definition 2.4. Then
the existence of a unique pressure p € L3(Q1g) follows from Lemma 2.6. We
have proved the existence part of the following result.
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Lemma 2.7. For each F € D™ '(QR), there exists a unique weak solution
(u,p) € D§,(Qr) x L§(Qr) to the boundary value problem (23) and (24).
Moreover we have the the following estimate

(30) [ulpieg) + PlL2r) < Cup " |Flp-1(an)-

Proof. It remains to derive the estimate (30). Taking v = v € Dj ,(Qg) in
(26), we first have

/2M|du|2 dz = (Fyu) < |Flp-1(n)|ulpi@z)-

But since p > p > 0 in Qg and |dulp2(r) = |[Vulrer) = [ulpi@g), we
readily deduce that
(31) [l piar) < 2w~ [Fp-1(a5)-

To derive the estimate for p, we need to show that there is a vector field v
in D{(2R) such that

(32) diV’U‘:p in Q_R and |U|D(1;(QR)SC|p|L2(QR)'

To show this, we adapt the proof of Theorem 3.4 in [10, Chapter III]. See also
[17]. Let us extend p to Br by zero outside Qg.! Then since p € L3(Bg), it
follows from a classical result due to Bogovskii [3] (see also Theorem 3.1 in [10,
Chapter III}) that there exists a vector field v; € D§(Bg) such that

div vy =P in Bpg and |U1|Dé(BR)<O|p|L2(QR)‘

Moreover, we observe that

/ vl-z/do'z—*/ divvld.’z::—/ pdx = 0.
1Y) Br,\$ Bro\Q

Hence by virtue of a corollary (Exercise 3.4) of Theorem 3.1 in [10, Chapter
III], there exists a vector field ve such that

(33) divvie =0 in (Qg,, v2=0 on OByg,, va=-v1 on 0N
’UgEDl(QgRO) and lUQIDl(QgRO) SCldiV((pvl)|L2(Q2R0),

where ¢ € C®(Bsg,) is a cut-off function with ¢ = 1 in Bg,. We extend v,
to Qg by zero outside sg,. Then from (33), we easily deduce that

divveo =0 in Qr, wve=0 on 0Bgr, v;=—-v; on Of)
Vg € DI(QR) and |U2|D1(QR) < ClvllDé(BR)'

1B, = R3 by convention.
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It is now easy to show that if we define v by v = v; + v, then v satisfies (32).
Hence from (28), (29) and (31), we deduce that

/p2 dm — F(U) —_= / 2,(1.(111, - dv dr — (Fa U)

INA

C (ﬁlubgmﬂ) + |F|D"1(QR)) vl D3 (2r)
< CHp '|F|p-1anlplLegg)-
This completes the proof of Lemma 2.7. [

One of the main purposes of this section is to prove the following higher
regularity estimates for weak solutions to the problem (23) and (24).

Proposition 2.8. Let (u,p) € D} ,(r) x L3(Qr) be a weak solution to the
boundary value problem (23) and (24). Assume in addition to (25) that

Vi e LP(Qgr)N LY(0gR) for some q € (3,6].
Then we have the following reqularity estimates:
(34) IVulipy + Pl aa <CM N Fp-1(@m)nL2(@n)
and
(35)  |Vulwiogan + Pl e < CM W)Y IFp-1(0r)nL2(@e)nLe(2);
where
Mp)=pp~" (14 |Vuli2@pnneeq) and N =N(g) > 1.

Proof. Our proof consists of three steps.
Step 1: We first consider the case that {lg is bounded and g = 1 identically
in Q. In this case, (23) reduces to the classical Stokes equations

(36) —Au+Vp=F and divu=0 in Qp.
We will show that if (u,p) € Hi(Qr) N L5 (2R) is a weak solution of (36), then

(37) Vulwirqg 12w S CIF D-1Qr)nL2AQR)NL (QR)

for 2 < r < 6. To show this, let FF € L"(Qpg) for some r € {2,6]. Then it
follows from a standard regularity result that w € W2"(Qg), p € WH™(Qg) and
(ulwzrn) + [Plwir @) < CrlF|Lr(q,) for some constant Cr but depending
on R. An R-independent estimate can be derived using a cut-off technique and
Poincaré inequality in Qup,. That is, adapting the arguments in [3, Section 5]
and {16, Section 3}, we can show that

(38) |Vulwrran) + IPlwrg < C(IF

A detailed derivation of (38) is omitted. Combining (30) and (38), we imme-
diately obtain the estimate (37) for r = 2. Assume that 2 < r < 6. Then in

L™ (Qp) T |VU|L"‘(QH) + lplL*‘(QR)) ‘
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view of Sobolev inequality, we deduce from (38) and (37) with r = 2 that
C (IF|trr) + [Vulrr@g) + [Plor@g))
C (|F|trar) + |Vulmiag) + [Pl @n)
C|F|D_1(QR)HLQ(QR)QL’"(QR)'

[Vulwrr@q) + 1Plwir (@)

IA AN IA

This proves the regularity estimate (37).

Step 2. Next we prove the proposition for the case that (g is bounded and
p € CYQg). Let (u,p) € HE(Qr) x L2(QRr) be a weak solution to (23) and
(24) with F' € L"(Q2g) for r = 2 or ¢. Then it follows from a regularity result in
(11] that u € W27 (Q2g) and p € W1 (QR). Hence it remains to derive (34) and
(35). From now on, we drop 2z and write L" instead of L"(Q g) for simplicity.
The same notations are also adapted to Sobolev spaces.

We begin with rewriting (23) as

(39) ~Au+Vp=F and divu=0 in 9,

where = p~'pand F = p~ ! (F + 2V - du — p V). Using the estimate (30),
Holder inequality and Sobolev inequalities, we have

|Flp-1 < 5&__2 (1 + |Vulps) (|Flp-1 + |Vu|r2 + |p|L2)
< CM(u)’|F|p-s
and

Pl < Cp (Flz + | [Val[Vul 12 + [ Val12)
~1 -2
<O |Flie + Cp?IValee (IVul 2o + 19l 20 )

_ _ 13 g 1-3 2
< Cu Y| Flus + C u=2|V 1 (:wwwm ol |p|;p)

=5

< Cu Pz + 07 OM() T (IVulgs + [pl12) + 0Vl + [p )
< Oy M (1) 77 |Flp-1p2 + (Vg + [plan)
for any small constant n € (0,1). Hence it follows from the estimate (37) that
gy |V VP2 < CIFID-IOL:
< Cp~ ' M(u)3=3|F|p-1nr2 +1(|Vula + [plan).
On the other hand, we observe that
|l < [PVplpe + |pVB|L2 + |pl L2
< Cp|Vplpalp I |§-}1 + CE|VD|r2 + |ples
< CM ()7 |Flp-1 + CEIVA12 + 5ol

and so
plm < CM(p)a=3|F|p-1 + Cu|Vp| L.
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Substituting this into (40) and choosing n = (2C1) ™!, we deduce that

5q
(41) Vulg + [plr S CM ()73 |Flp-1naz2.

This proves the first estimate (34).
To derive the second one, we use the estimate (37) again to deduce that

(42) Vufy o + |VD|Le < ClF|p-1nr2nLe-
By virtue of (41), Hélder inequality and Sobolev inequalities, we obtain
Flpaine < CM(W)a5|Flp-ins
and
Flpe < Cp™" (|F e + [Vl |Vul [0 + 1P Vil La)
< Cp HF|Le + Cu|Vulre ([Vulpe + p L)

< Cp | Flge + 1Vl (1Vul 7 [9ulpn , + [l ol )
<O "MW Flp-inrznne + 1 (Velwrs + [plwie)
for some v = v(g) € (0,1) and N = N(g) > 1. Similarly, we have

iplwie < |PViplre + |pVplLe + |plLs
< Cp M NplLalpl 1P e + CHIVElLe + 1Pl He

_, N 1
< CM(W"|Flp a2+ CHVB|Le + 5 [P lwa

and so
plwre < CMG)N|Flp-1nrz + CRIVD|La.

Substituting these estimates into (42) and choosing n appropriately, we easily
derive the second estimate (33).

Step 3. Finally we prove the propositioin without any restriction. In Step 2,
we proved the proposition under the additional assumption that 2y is bounded
and p € C'(fz). But since the estimates (34) and (35) are independent of
the Cl-regularity of u, a simple regularization argument allows us to prove the
lemma for the case that (1 is bounded. Hence to complete the proof, it remains
to prove the proposition for the case that €2 is unbounded and R = oo. This
can be deduced from the uniform estimates (34) and (35) on R < oo using the
method of domain expansions. Let (u,p) € D} ()N LG() be a weak solution
to the problem (23) and (24) with R=o0c and F € D™} ()N L"(Q) for r =2
or ¢. Then since

M{plog) < M(p)
and
|Flarlp-1@anL2@unnr ) < Flp-1@)nLz@qnL Q)

for each R < oo, it follows from Lemma 2.7 and the validity of the present
proposition in case of bounded domains that for each R with 2Ry < R < oo,
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there exists & unique weak solution (u®,p¥) € Hy ,(Qr) x L§(Qr) to the
problem (23) and (24), which satisfies the uniform estimate

|UR|Dg(QR) + |VUR|W1.r~(QR) + |PR|W111~(QR)T
< CM ()N |F|p-r@nr2@)nL-(@)-

Extending (uft, p) to Q by zero outside Qg, we find that (u®,p*) € D} () x
L3(€Q). Then adapting the proof of Proposition 6 in [8] (see also the proof of
Lemma 4.1 below), we easily show that

(43)

uft 5> 4 in Dé,g(Q) as R — oo,
which implies immediately that
Vpt* - Vp in D}

(1) as R — oo.
Hence from (43), we deduce that

IVulwr. @) + |Volwir@ < CM (@)Y |F|p-1(@)nr2@)arr@)-
Combining this estimate and (30), we complete the proof of Lemma 2.8. [J

Remark 2.9. In our previous paper [6], we derived similar estimates to (34)
and (35). But they depend on the radius R because Poincaré inequality in {1g
was used in an essential way.

2.4. The stationary heat conduction equation

Adapting the previous arguments, we can also prove the similar regular-
ity results on the boundary value problem for the stationary heat conduction
equation

—div(kVO) =G in Qg
(44) §=0Con 00 and 6(z) >0 as |z| &> 00, =z € Qg,
where G and & are known scalar fields in 2 such that
(45) GeD'0g), k1eL®fg) and K<k in Qg
for some constant k with 0 < g < 1.

Proposition 2.10. For each G € D™1(QR), there exists a unique weak solution
6 € DL(QR) to the boundary value problem (44), which satisfies the estimate

10103 (2r) < CETG|p-1(05)-
Moreover, if k satisfies the additional regularity
Vk € LS(QR) N LY(QR) for some q € (3,6],
then we have the following regularity results:
V0| (r) < CM ()Y |Glp-1(@r)nL2(0m)

and
V8w o(an) < CM(K)V|G|p-1(0p)nL2(@r)NLe(R)>
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where

M(k)=r"" (14 |Vk|130uniear)) ond N =N(g) > 1.

3. A priori estimates for a linearized problem

To prove Theorem 1.1, we consider the following linearized problem

(46) divu =0 in (0,7) x £,

(47) pi +div{pv) =0 in (0,7) x €,
(pu): + div (pv ® u) — div(2updu) + Vp

(48) = div (2(p — po)dv) + pf in (0,7} x €,
cy ((p8)r + div (pbv)) — div(keVE)

(49) =div ((k — ko)Vn) + 2u|dv|* + ph in (0,T) x 9,

(50)  (p,u,8)|i=0 = (po,ug,bp) in Q, (u,8) = (0,0) on (0,T) x 61,

(51) (p,u,08) = (0,0,0) in (0,7T) x  as |z] — o0,

where we write

p=ulp,pn), co=colp,pn), &= r(p,pn),
po = p(p(0), p(0)n(0)) and ko = k(p(0), p(0)n(0))

for simplicity. Throughout this section, we assume that the data pg, ug, 8o, f,
h satisty

po>0, pp€ LENH WY wy e Di, ND? 6, € DinD?,
(52) (h,f)e C(0,T;; L) N L*([0, T LY), (hy, fr) € L2(0,T; H™),
—div (2uoduo) + Vpo = pg g1, —div (ko Vo) — 2p0|dv(0)]* = pg g2

for some g € (3,6], po € H' and (g1, 92) € L?. We assume further that the pair
(v,n) of known vector and scalar ficlds satisfies

(53)  (v,p) € C([0,T): D{ " D*) N L*(0,T; D*9), (vi,m) € L*(0,T; DY).

Here we emphasize again that v need not be divergence-free in (0,77) x €.
First, we prove an existence result for the problem (46)-(50) for the case
that pp is bounded below away from zero and 1 is a bounded domain.

Lemma 3.1. Let Q0 be a bounded domain in R® with smooth boundary. In
addition to (52) and (53), we assume that pg > 6 in 0 for some constant
0 > 0. Then there exists a unique solution (p,u,p,8) to the linearized problem

(46)-(50) such that
p € CO0,T.;W"9), (u,8) € C(0,T.); Hy N H*) N L*(0, T,; W*1),
(54) pe CI0,T.; HYN L0, T.,Wh ), p € C([0,T,); LYY,
(us,0;) € C([0,T); LYY N L*(0,T; HY) and p > 68 in (0,T) x Q

for some constant § > 0.
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Proof. The existence and regularity of a unique solution p to the linear hyper-
bolic problem (47) and (50) were proved in Lemma 2.2. Then since p > 4 > 0 in
(0,T) x 2, we can rewrite (48) as a nonhomogeneous Stokes equations. Hence
the existence and regularity of a unique solution (u,p) to the linear problem
(48) and (50) can be proved by standard methods like a semi-discrete Galerkin
method in [6]. We omit its details and refer to [6]. Similarly, we can solve the
linear parabolic problem (49) and (50). This completes the proof of Lemma
3.1. L

Assume that pg, ug, 8o, f, h, v, n and Q satisfy the hypotheses of Lemma,
3.1. Then it follows from Lemma 3.1 that there exists a unique strong solution
(p,u,p,0) to the linear problem (46)-(50) satisfying the regularity (54). The
purpose of this section is to derive some local (in time) a priori estimates for
(p,u, p,#) which are independent of the lower bound § of py and the size of §).
For this purpose, we choose a fixed constant ¢g > 1 so that

co > 1+ |po| + |(uo, 0o)|py + [(91,92)| L2

3
L2NHINWL a

and assume that

1(w(0), n(0))|py < 20,

T,
(55) s ooy + [ (1@ + oOlbas) de < 201

T*
sup ([o®lpe +n(Ologer) + [ (mOfg + In(Olbe.,) dt < 2
0<t<T. 0

T#
sup [n(t) — n(0)|pypr+ < 2¢;7  and / pone(8) |72 dt < 2¢5°
0<t<T, 0

for some constants ¢1, ¢c; and T, with 1 < ¢g <¢; <e¢p and 0 < T, <7T', which
will be determined later and depend only on ¢y and the parameters of C.
Throughout this and next sectoins, we denote by C' a generic positive constant
depending only on the fixed constants ¢, T, |u|ci(r2), |£lcyr2), |Cvlorr2)
and the norms of f and h. Moreover, M = M(-) denotes a generic increasing
continuous function from |1, 00) to [1, c0) which depends only on the parameters
of C. We also adopt the simplified notation u(t) = u(p(t), p(t)n(t)), etc.

3.1. Estimates for the density p

We first derive estimates for the density p, which is the solution to the
hyperbolic problem (47) and (50). By virtue of Lemma 2.2, we have

t
B6) 1O, 8 o < 10l g preuyno 52 (€[ Veliinpra ds)



HEAT-CONDUCTING INCOMPRESSIBLE FLUIDS 661

for 0 <t <T. Then since

t t %
(57) /0 IV'U’HIQDI.Q ds S L2 (/c; |Vv]i[1m)1,q dS)

< CCQt + C(Cz)t)%,
it follows from (56) and (47) that

(58) PO, 3 e S Coand [pe(®)] 5 < Cc

for 0 < ¢ < min(7y,71), where T} = cgl. On the other hand, from Lemma 2.2,
we also deduce that

(59) p(t,z) = po(U(0,t. 1)) exp l'-—/o divu(s,U(s,t,z))ds|,

where U € C([0,T] x [0,7] x Q) is the solution to the initial value problem

L U(t,s,2) = v(t,U(t.s,1)), 0<t<T
U(s,s, z) =, 0<s<T, xe€fl.

: : . _3
In view of the classical embedding result W49 «— C% 174 we have

po(U(0,1,2)) = po(x)| < Clpolw.«|U(0,t,2) — 2|73,

while
it

U(0,t,2) — x| < /

0

0 T o o
a;b(.s,t,.z)

Hence using the estimate (57), we obtain

|P(t, .’B) o pO(I)‘

(po(U(0,t,2)) — po(r)) exp <—~/0 divo(s,U(s,t,x)) ds)

t
ds < / |v(s)] L ds < eat.
0

<

t
1 —exp (—~/ divu(s,U(s,t, 1)) ds)
0

+ po(z)

(60) o
< Clpolw:. (|U(0,z‘.:z:) — 2|75 +/ |IVu(s)|r, ds)
0

X exXp (C/O Vv (s)] g~ ds)

< Ceo ()% + eat + (e2)})

for 0 <t < min(7,,71) and » € €. Therefore, taking

42q —
Ty =min(T1,c¢;,"") with @) = max ( qq 33, 100) y

we conclude that
(61) p(t) = poli= < Cey ™ for  0<t <min(T,, Ty).
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Using this and (58), we also conclude that
(62) p(t) = polrsnre < Cey;® for 0 <t < min(T,,Ts).

3.2. Estimates for the coefficients u, x and c,

Note that u, x and c, are positive C*-functions of (p, pn). But by virtue of
Lemma 2.1, (55) and (61), we have

n(t) —n(0)jz= < Cln(t) — n(0)|prprs < Ceg!
and
lp(@&)n(t) — p(0)n(0) L < |(p(t) — po)n(t)|Le + |po (N(t) = n(0)) |z < Ce3t

for 0 < t < min(7,,T3). Using this observation together with (58) and (61),
we easily show that

M(eo)™" < (), K(t), ¢ (t) < M(co)
(1(t) = po, K(t) — ko)L < M(co)es;
|(u(2), 6(t), co ()| Dr1aprar < M(eo),

|(1(2), £(2), o (8))| D10 < M(co)e2

for 0 < t < min(T,T>), where ¢ = min(g,4). Moreover, in view of (58) and
(62), we have

[ 106, mu(s) e s

Co),

(63)

< M(Co)/ (Ipel7s + |pelisinlie + lome]7s) ds
0
M (co) (Czt‘f' (I = poliel V|2 + |polLelpomel 2|V L2) ds)

< M C(] (622 + 623|Vﬂt[2L2 + |pom|L2|Vnt[Lz) dS)

for 0 < t < min(T,T5). Hence it follows from (55) that
t

(64) | pe(8), &e(8); (co)e(s))Iza ds < M(co)ey

for 0.<t< mm(T*, Ts).

Remark 3.2. If u, k and ¢, are C'-functions of p and 7, then

[ 1)) ) s ds < MGeo) [ (el + In(9)lEs) ds

t

< Meo) (24 € [ Im(o)y ds )
0

< M(co)écg
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for 0 < t < min(T.,T»), where C is a constant depending also on the size of
(1. However, we have failed to derive an analogue of (64), which is necessary
in particular to estimate the third term of the right hand side of (66).

3.3. Estimates for the velocity u
In view of (47), we can rewrite (48) as
(65) put + pv - Vu — div(2uedu) + Vp = div (2(p — po)dv) + pf.
Differentiating this with respect to ¢, we have
pugs + pv - Vuy — div(2upduy) + Vpy
= — prug — (pv)r - Vu + div (2(p — po)dv), + (pf):-

We multiplying this by u; and integrating over £2. Then by virtue of (47), we
derive

1d [ . .
57 plus|? d$+/2u0|dut|zdm
(66) = -—/pt|uf|2 d:z:—/((pv)t-Vu) Uy dx

—/2 ((pe — po)dw), : Vupdz + ((pf)e,ue)

Using Hoélder and Sobolev inequalities together with (58), (63), and (64), we
can estimate each term of the right hand side of (66) as follows.

—/ptlutjzd:r:: /idiv (pv)|us|? dzx
= —2/(pv'Vut)'utd:c

< 101 0] | Vte] 2] 1.

. 1
S CCOCél\/ﬁut[%'z + gf_j’_luf!QDé’

——f((p'v)t -Vu) - us dr

— / (ptv - Vu + pv; - V) - uy dr

< Clptlps|v|oelu|pylutl py + C'ﬁﬁmlvtbé|VU|L3]\/EU*IL2
‘ 5 B ‘ 1
< chlulfoé + Ccoslvflfoé]\/;_wtlzz +e7 M Vulgs + gﬁlutl%é
B , 1
< Ceo (+ elurlhy +2) (IVpulia + lully) + |Vullp + Spludy,
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— /2 (6 — po)dv), : Vuy dz
< C(|peles|Volm + = polo=|Vue|p2) [V 2

1
< O (Bluelie + 1 = polie ualy ) + gpluly

and
((pfle,ue) = (pef,ue) + (fe, pue)
< Clodislfluzlulog + |fulsr-slovel
: 1
< Ol + lfll) + Il + Sl

Here € > 0 is a small constant and p = infg po. Substituting all the estimates
into (66), taking € = ¢;* < 1 and observing that

p> Mco)™h, g = polre < M(co)e;'  and  |due|pe = [Vurlp2 = |uelps,

we deduce that

d _
— [V/Pulzz + Mco) ™ |uil

< M(cp) (cg + CQ_1|’U¢|2D5) (1 + |v/putl3e + |“|ng)
+C (Cglﬂ/t,%:f + 3| felfr-1 + |Vaulf) .

Hence integrating this over (7,t) and using (64), we have
t
Vo)l + Meo)™ [ furlhy ds
t
(67) < M(co) + |v/pue(7) |32 + C/ (Vul?, ds

t
- M(eo) [ (8 ety ) (L+ 1vBudlhs + luldy ) ds

for 0 < 7 <t < min(7y,T>). On the other hand, since u; is divergence-free in
(0, T) x Q, it follows from (65) that

/plutP dz

= / (—pv - Vu + div 2uedu) — Vp + div (2(p — po)dv) + pf) - up dx

= / (—pv - Vu + div (2uedu) — Vpe + div (2(u — po)dv) + pf) - us dx
and

/;o|ut|2 dx < C/ (,olfv|2|Vu,|2 + p|f|2) dzr + /p‘1|div (2podu) — Vpol? dz

+C / p~tdiv (2(p — po)dv)|? dx.
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Noting that p > § > 0, p, p € C([0, To}; W 9), w € C([0, T.); H?) and

div (2uodu(t)) — div (2uodug) = Vpo + pgy in L* as t—0,
we thus have

lim sup |/puy(7) |‘1t)2

7—0

< Clpolue (IVe(O) i uolhy + 15012 ) +1gilh < O,

Letting 7 — 0 in (67) and using the fact that
] t ¥
IVu(t))52 < C|Vul” + c/ Vue|22ds for 0<t<T.,
0
we obtain
¥ + t ¥
(1 + |v/pus(t)|52 + |u(t)}‘f)é) +/ [utﬁ)é ds
0
t ‘ 4 ‘
< M(c) (1-}—/ |Vul ds +/ ((‘g + (:gllwlf)l) (1 + [/puilzz + IUIiy) dS)
0 0 0 0

for 0 < t < min(7T,,7T»). Hence, in view of Gronwall’s inequality, we deduce
that

68) (IvAu®)ia + [u(),) +/01u,@)6 ds < M(co) (1+/0 Vul2,, ds)

for 0 < t < min(Ty,7T»). To estimate |Vu|y1, we observe that for each ¢ €
[0, 7], u = u(t) € Di N D? is a solution of the Stokes equations

—div (2uedu) + Vp=F and divu=0 in €,
where
F=p(f —w—v-Vu)+div(2(p — po)dv)

satisfies

|Flp-1nr2 < Clpligmﬁl\/ﬁ“th? + Clplrsnpe~ (l?)]ugwu!m + IflLZ)
+ Clp = pole= Vol + C|V(p — po) - dv 2
and
[Floe < ClplielVpwlr: + Clplueludl py + Clploe VU g [Vu| g
+C|plree|flrr + Clp — ol |V20lpe + C|V (1 — po)lre|Vv|pe.
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Hence by virtue of Proposition 2.8 and (63), we have
l(vu’ap)lHl fg M(CO) IFID—lmL2

< M(co) (1+ 1y/pudlza + ol Vs
+C (m = tiol o Vol + CIV (1 = o) o 'V”'L%‘%)

1 1 1—3 3
< M(eo)er (1 + |vpuel: + [Vul 7| Vulfn + Vol “lWlBﬁ)
and thus
3
(Vuplm < M)t (e + IVpulss + oy ).

Therefore, substituting this into (68) and applying Gronwall’s inequality again,
we conclude that

V)2 + @)l + /0 ue() 3 ds < M (co),

3

|(VU(t),p(t))|H1 < M(CO)C%CQE

for 0 < t < min(T,T3). Moreover, it follows also from Proposition 2.8, (63)
and (69) that

I(VU:P)IWM
< M(co) | F|p-1nr2nLa

3

< M(co) (Cfcgq_l + |vpus| L2 + |uelpp + [Volm [Vulm + |f|H1)
+ M(co) (Jpp — polreelv|pz.a + |V (1 — po)ra| Vv L)
< M(co) (b + 1l + luel oy + 5 ol 2o + BIVoli " IVolip o)

for some v = y(g) € (0,1). Hence taking

6 — 2
T3 = c5? with a9 = min (al, 1_;),

we deduce that

(70) /0 (Ju(8) |5z« + [P(8)|51q) ds < M(co)(1 + 5 27#177) < M(co)

for 0 < t < min(7%,T3).
3.4. Estimates for the temperature 6

Differentiating (49) in time, we obtain
Cypli — div(koV8,)
= — (cup)ibs — (copv - VO); + div ((k — ko) V), + 2 (u|dv]* + ph)t :
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Then multiplying this by 8, and integrating over 1, we have
1d
2 dt
1 0 e 11 1 5
(71) = “5(01.')1*.0,9:%/‘ + (zﬂld?f’l )t9t dz — —2“(30;05]9:5’ dx

¢, pl6: | di + /K,OIV@(Q dx

— /(cvp’v -V 8)16: dx — / ((k — &0)VD), - VB, dz + ((ph):,0)-

Using (58), (63), (64) and (69). we can estimate each term of the right hand
side in (71) as follows.

M (co) (I(Cv)t L3/ PO L2 -+ ]lir|L3W’U|i4 + W’U|L3WWIL2) |9t|Dg,

: : , 1
< Meo) ((eo)elzalv/pbilie + ercalmelys + crea| Vurlgz) + 2610l b,

8
1 .
“f501'0t|9t|2 dr

—l—/div (pv)c.|8:]? dr

AN

Il

2
< /p]vHVCUI[Qf 2d:rr+/p[b‘[(}l,[é’tllvgt[da:
< C’Plgwl?f‘lné Wf’-vllﬂlx/ﬁ@tlwggg VO;| .2
+ Clpi e vl [P0t 12N Orl 2
‘ 33 1,3
< M(co)ercaly/pbil)» * V0|72 * + M(co)ealy/pBe]r2| V8L

9\ 39 9 1 .
< M(co)(e163) 50|\ /pbel2 + gﬁ'af,ééa

— /(Cl,p’l) . VB)th d.’L’
< Mico) (l(ea)i)as + 8 +elVuelza) (IVO32 + |v/p8:|72)

1 ‘
+e7 VO35 + g,f:ﬁ|9t|_}z)5:

. . . 1
/((ﬁ; — ko) V)i - VOrde < Clcalkel i + c3 *Imilpy) + g£l6ilpy
and

o e . 1
((ph)e,6:) < C (¢ + cglheli=1) + |v/pBil72 + ‘g.’ilgt%g,-
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Here ¢ > 0 is a small number and k = infq k¢. Substituting all the estimates
into (71) and taking € = ¢;*, we have

%/cvmetl? d:)3+f_e_/|V9tl2d:c

4

< Meo) ((llenlts +e8 + 2 1uulte + ) (VAo + 161

+IV83 + enclmfds + crcal Voulle + cBlkul3 + ¢ + [ulhos + 652 mil)

Hence integrating over (7,t), we derive an analogue of (67):

NZAGIES /rt 16217 ds
< Mieo) (cles + [ (90 ds) + VA1

4q

t
+M(CO)/ (Cgl(CvHQL?» +e3t + szlv’vtl%z) (1\/591;@,2 + (9|2D5) ds
for 0 < 7 <t <min(7y,T3). Then observing that

—'diV(ﬁZng(t)) — u0|d’0(0)|2 + pégg in L? as t—0
and

t
VO(t)|2 < C|Vhy| L2 +c/ V6,22ds for 0<t<T.,
0
we easily deduce that

VRO + 180, + [ 10y ds < Meo) (lea+ [ 1900 s

4g

t
(il + e + Vol ) (IR + 1615y o

for 0 <t < min(7%,T3). Hence in view of Gronwall’s inequality, we have

+M(co) /

T

1
VABOL + 100 + [ [0y ds

t
(72) < M(ep) (c:f@ -l—/ V8|31 ds)

for 0 < t < min(7T,T5). On the other hand, since each 8 = 6(t) € D{ N D? is
a solution of the elliptic equation

—div(keVO) =G in ,

where G = —c,p(0; +v - V) +div ((k — ko) Vn) + 2u|dv|* + ph, it follows from
Proposition 2.10 that

IVO|wr.» < M(co) |Gl p-1np2nL for r=2,q.
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Combining this result and (72), we can easily show that

VB8 (t) 32 + [VO(H) 3 + /Ot (18:()1%; + 16(3) 3. ) ds

3

(73) < M(co)eies!

for 0 <t <min(7T,,T3). As a conscquence, we have

(1) 100~ toloy < (1 [ By ds) < M)} < MCeo)s”
and thus
(75) 18(8) — Bo| pr.s < ClO(1) — 90|§;é|9( ) — Bl %, < M(co)e;

for 0 <t < min(T,,T3). Moreover, since
t
/ P72 ds < 2/(l(ﬂ — p0)0¢|72 + pB:[12) ds
0

t
< C sup [p(s) _PO|L3/ lgt[pl d9+CCUt sup [/p8:(s)(7z,
0<s<t 0<s<t

it follows from (62) and (73) that

t
(76) f 1poB:(8)152ds < M(co)e; for 0 <t < min(T,,T3).
0

3.5. Conclusion

From (58), (69), (73), (74), (75), and (76), it follows that if 0 < ¢t <
min(7T,,T3), then there exists a constant Al (cg) > 1 depending increasingly
on ¢g such that

ot
uOloy + [ (1l + lufbeo + Vo) ds < M)
0

3

t
uOlpe + 00 gons + | (1Bl + 1615 ) ds < Mco)efes”

and

Jg(t) _‘QOII)IQDI 4 < 1[((0 2_ . / [polgt ),12 ds < ﬂ/[((,o)C? )

lp(t)lL%ﬂHlﬁqu—l_lpt )]Iﬂ1q+‘ ()'Hl

‘ \/_?Lh f@t |[2 +/ |p h11qd3 < Af.{((‘o)c%CQ‘ql .

Therefore, choosing ¢y, 2 and T, so that

3

(77) 1 = M(co), o = M(cg)eles' and 0< Ty < Ty = min(T, Ty),



670 YONGGEUN CHO AND HYUNSEOK KIM

we conclude that

T,
sup [u(t)|ps + / (ue(®) oy + lu®)Ban)dt <ei,
0<t< T, 0

T,
sup (u(t)lpe + 1001 nyope) + [ (8O +16ORs ) dt < cr
0<t<T, 0

T
(78)  sup |8(t) — 6(0)| prprs < 5 / poBe(t) 22 dt < 5,
0<t<T, 0

Oésllil)T*(lp(t)lL%”HlﬂWl’q + Ipt(t)lL%qu + [p()|m1)

T
+ sup [(\/ﬁut, \/Egt)(t)lLQ +/ |p(t)|%y1q dt S Co.
0<t< T, 0

Remark 3.3. It should be pointed out that the constant C doesn’t depend on
the lower bound ¢ of the initial density py and further, the radius R in case
when {2 is the intersection of an unbounded domain and a large open ball with
radius R.

4. Proof of Theorem 1.1

In this section, we provide a complete proof of Theorem 1.1. Let (pg, ug, o)
be a given initial data satisfying the hypotheses of Theorem 1.1. To prove the
theorem, we construct a sequence {(p*,u*, p*,6%)}1>1 of approximate solutions
solving the linearized problem (47)-(51) successively.

4.1. The construction of {(pk, uk, pk, Qk)}kzl

First, let u% be the solution in C([0,00); D§ N D?) N L2(0, c0; D?) of the
Stokes equations

uw) — Au’ +Vp? =0 and divu’ =0
in (0,00) x 0 with the initial data u%(0) = ug. We also denote by §° the
solution in C([0,00); D§ N D?) N L2(0,00; D?) of the linear parabolic equation
62 — A8° = 0 in (0, 00) x Q with the initial data 6°(0) = 6,. It is easy to show
that |

1
sup [u°(Olpyrps + | (1u (O, + [ (Olbs) dt
0<t<1 0

(79) < C(1+ fuoldynps)
and
1
sup 82Ol pyoo + [ (10200, + 1620 ) d
0<t<1 0
(30) < O +10lBsnp0)
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Next, let us define ¢y by

co = 2+ [pol + | (uo, 90)]1‘)5 + (g1, 92)| L2,

3
LinHINMyl ¢

and we choose the positive constants ¢y, ¢ and T, as in (77), which depend
only on ¢p and the parameters of C. Then since ug € D} N D? is a solution of
the stationary Stokes equations

—div (2uedug) + Vpo = pd g1 and  divug =0
in €, it follows immediately from Proposition 2.8 that
(81) ol p1ape < M(co)

for some increasing function A/ = A (-). Similarly, using Proposition 2.10, we
easily deduce that

(82) 0] pinp= < M(co).

By virtue of (77), (79), (80), (81), and (82), we may assume without loss of
generality that

-1
sup 1(u%,6°) )| pgrpn + [ (108,89) 1)y + (0, 6°) 0) o)
0<t<1 0

(83) < .

Moreover, since 8° € C([0,c); DiND?), 8% € L?(0,00; D}) and po € L3, there
is a small time T, € (0, T,,) such that

T,
(84) sup 6°(t) — 0ol p1npr < ¢;'  and / 007 (8)[72 dt < ¢5°.
0<t<T, 0

Our construction of the sequence {(p*,u*,p*,0%)}k>1 is based on the fol-
lowing key lemma to the proof of Theorem 1.1.

Lemma 4.1. Let (v,n) be a pair of vector and scalar fields satisfying the reg-
ularity (53) with T replaced by T.. Assume further that (v,n) satisfies

(v(0), n(0)) = (uo, bo),

T.
sup 1ty + [ (10e®lpy + o)) de <,
0<t<T, 0

85 L .
) sup (lot)le + Ib)ingrn) + [ (@i, + m®fe.) de <

0<t< T,

T,
sup {n(t) — (0} pr1apr.s <e;' and / pome(8)|72 dt < 5 °.
0<t<T. 0
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Then there exists a unique strong solution (p,u,p,8d) to the linearized problem
(47)-(51) in [0,T.] satisfying the estimate (78) as well as the regularity
peC(0,T.; L NH' nWh9), p, € C([0,T:]; L% N L9),
(u,9) € C([0,T,]; Dy N D*) N L*(0,T,; D> 1),
pe C([0,T,]; H) N L*(0,T,,Wh 9),
(u¢,8;) € L*(0,T; D§)  and  (/pus, /p8;) € L=(0, Ty; L?).

Proof. Let ¢ € C2°(B1) be a smooth cut-off function such that ¢ =1 in By /o,
and we define

¢ (z) = ¢ (/R), v*(t,2) = ¢ (2)v(t,z) and " (t,z) = " (@)n(t, )
for (t,z) € [0,T,] x Q and 2Ry < R < 00, where Ry > 3 is the constant defined
in (11). Note that if @ C R3, then v** = v and n®* = 5 for each R > 2Ry and
otherwise, they are supported in [0, T.] x Qg, where Qg = Q@ N Bg. Moreover
it is easy to show that {(v®, ™)} and {(v},nf)} converge to (v,n) and (vs, n;)
in C([0,T); D N D?*)N L?(0,T; D*9) and L?(0,T'; D}), respectively.

For each R > 2Ry, let (uft,pf’) € (D§ N D?) () x H(QR) be the solution
to the Stokes equations

(87)  —div(2ufdull) + VpE = (pf):gF and diveF =0 in Qp,

where

(86)

pe =po+ R, uft =plpg, pin™(0) and  (p§)2gi" = pg 91
Then extending (ult, pft) to 0 by zero outside g, we will show that
(88) udd = up in Dg,(R) as R — oo.

To show this, we first observe from (8) and (87) that
(89) / 2ult|dull? dx = / p('}%gl cutde = / 2uodug @ dug’ dz.
Q Q Q

—~1
[ - < CR " and

(90)  lig — polree < Mc2) (RT2(L+ [n(0)]=) + [n™(0) — 1(0) =) ,
it follows immediately from (89) that {u{'} is bounded in D§ ,(€2). Hence

there exists a sequence {R;}, R; — o0, such that {ut”} converges weakly in
Dj ,(Q) to a limit u§°. Moreover in view of (90), we deduce from (88) that
ug® € Dj ,(92) is a weak solution of the Stokes equations

But since |p§* — po|

1

—div(2uodug”) + Vpg® = pég1 and divuy® =0 in Q
with some pressure pg°. Since ug € D%,,J(ﬂ) is also a weak solution of the same
equations, it follows from Lemma 2.6 that u3® = wug in ). Then by virtue of
(88) and (90), we easily show that {ug’ } converges strongly to ug in Dj , ().
Since the above argument also shows that every subsequence of {uf'} has a
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subsequence converging in D () to the same limit ug, we conclude that the
whole sequence {u{'} converges to ug in D} () as R — oo, which proves (88).
Similarly, if we denote by 4 € (D{ N D?)(Qx) the solution of the equation

~div(sfVOE) — 2u8|de®(0))* = (pF)2gF in Qg,

1
where kf = p(pfl, pfn*t(0)) and (pf )z'g.f = p2 gy, and if we extend 6 to Q by
zero outside 2y, then

91 0 -6, in D) as R — cc.
0 0

Combining all the above arguments, we deduce that there exists a la,rge
number Ry > 2Ry such that if B > Ry, then the initial data (po , U ,90)
satisfies

L+ lpgl, g + [(ug' 65) by + (91", 93 )2 < co

and the pair (v®,n%) satisfics the estimate (55). Hence it follows from the
results in Section 3 that there exists a unique solution (p%,u’t, p%,8%) to the
initial boundary value problem (46)-(50) with (pg, uo,80,v,n,T,$) replaced
by (pf,ult, 08 v, nf T, Qr) and the solution (pf,u’,pf, 0%) satisfies the
uniform estimate (78) on R.

Let us now cxtend (p, u®, p2 6%) to O by zero outside Qr. Then by
virtue of standard weak compactness results in Sobolev spaces, we can choose
a sequence (R;), R; — oc, such that (p/s, uft

L2ﬁHlﬂM l.q

 pfts, 819 converges to a limit
(p,u,p,0) in the following weak or weak-x sense:

(uft, 0%y S (u.0) in L>(0,T.; D{() N D2 _(Q)),
(p™ pfi)y X (p,p) in Lx((),T*;T’T*,lOCq(Q) x H ()
and
R; AR, . 2 1
u, 7,68,7) = (uy.6y) in L2(0,7T.; Dy (2)).

Moreover, it follows from a compactness result in [24] that for each sufficiently
large R > 2Ry, some subsequences of {(u®,6%)} and {pf7} converge to (u, #)
and p in C([0,T.); D§(Qg)) and C([0.T.]; L1(QR)), respectively. Using these
convergence results together with (78), (88) and (91), we easily conclude that
(p,u,p,d) is a strong solution to the original problem (47)-(51) satisfying the
estimate (78). Then the uniqueness and time continuity of the solution can be
proved (in an easier way) following the arguments in Section 4.3 below for the
corresponding results on the nonlinear problem. We may omit its details. We
have completed the proof of Lemma 4.1. O

Lemma 4.1 enables us to construct the sequence {(p*, u*, p*,0%)}x>1 of ap-
proximate solutions. From (83) and (84), it follows that the pair (v,n7) =
(u?,6°) satisfies the hypotheses of Lemma 4.1. Hence there exists a unique
strong solution (p,u,p,8) = (p',u',p!,8") to the linearized problem(47)-(51)
in (0,7T,) with (v,n) = (u”,8%), which satisfies the estimates (78). Note that
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(v,n) = (ul. ') also satisfies the hypotheses of Lemma 4.1. Hence there
exists a unique strong solution (p,u,p,8) = (p?,u?,p?, 62) to the linearized
problem(47)-{51) in (0,T.) with (v,n) = (u!,8'), which satisfies the esti-
mates (78). By an obvious inductive argument, we can define a sequence
{(p*,u*,p*,0%) }k>1 such that for each k > 1, (p,u,p,8) = (p*,u*, p*,0%) is the
unique solution to the problem (47)-(51) in (0,T) with (v,n) = (u*~1,8k"1)
and satisfies the uniform bound

k
sup (10O 2oy, 0+ 1E O] 20

0<t<T,
+ sup (1(u*,65)(®) pyrpe + 0* )
(92) 0<t<T,
+ ess sup | (v pru®, / pR0F) ()| 12
0<t<T,

e

T, y
b [ (1 0O + 00Ol + P O] e < .

Throughout the proof, we denote by C' a generic positive constant depending
only on ¢y and the parameters of C, but independent of k.

4.2. Proof of the convergence

From now on, we show that the full sequence {(p*,u*, p*,8*)}r>1 converges
to a solution to the original nonlinear problem (2)-(4) in a strong sense. To
show this, let us define

—k+1 —k41 —k+1 pkt+l k+1 k41
+ + +’9 ):(p+ +

(p s U s P _pkau _ukapk+1_pk79k+1—9k)'

Then from (47)-(49) with (v, n, Py s P, ) = (uk, 8% p*t1, yrt1 phtl gk+1) and
(v,m,p,u,p,0) = (uP~1,0%51, pk u* p* 6%), we derive the difference equations

(93) prtl 4wk vttt 4@k vk =0,

pPrigith 4 ok VRt — div (2pedut ) + VB
P — b — bl Wk < pR gk gk
+div (2(p*t! — pk)du®) + div (2 ( (1* — po)du"),

(94)

chtl phtl (§f+1 + u® - V@Hl) div (ngvng)
= pf! (h— chOF +uFt. VE*)) - ckp*tiat . vek
(95) —(c ™ = ep)p" O +ut - VEY)
+div ((fﬁ:k-i_l k*YVO*) + div ((n — ko)VE )
2 — ) dut[? 4 2t (P — ),

where p*t1 = p(p*tl, p*T16%) etc.
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First, multiplying (93) by sgn(3**1){**!|2 and integrating over Q, we ob-
tain

7 [P dn < [ valipt 4 vttt do

3 ; . —k
< Clvuk|w1‘a|ﬁk+]|lzg + Clp* 1 [VT*| 2 |p ™1

[ I
[N

1
Hence multiplying this by [p"*! ]; ., we have
i 2

<AL + el VEFL,

()

T

b2

d\_pi12
(96) a;lﬁ ‘L

where A% (t) = C|Vu*(t)|y1. s +e71Clp*()]%,. . Notice from the uniform bound
(92) that fot A¥(s)ds < C(1+¢e~'t) forall k > 1 and ¢ € [0,7T.]. In a similar
manner, we can also show that

d ... o _
(97) alp““liz < BEWpHHE . +e|VuP|i,

for some BY(t) € L'(0,T.) such that fot Bf(s)ds < C (1 4+¢7't) for k > 1 and
0<t<T..
Next, multiplying (94) by ©*T!, integrating over Q! and recalling that
prtl pdiv(p*u®) =0 in Qx(0,T,),

we obtain

1 : .
"2“%/pk+l|ﬁk+lfzdﬂ'f+/2ﬂ0|dﬂk+llzd$

(98) < /!ﬁ’““ilf—'ttf —ut T Vr[Et ]+ (et [t | |Vttt

2l — VUM VER 2k — o [VE || VIR de.

In view of Holder and Sobolev inequalities, we easily show that the first two
terms in the right hand side of (98) are bounded above by

. - . . 1
C’“lﬁ‘““]igm + Ce W pF TR 2, + e[V |5. + ZE}V@:’““ 2 5

for some C*(t) € L'(0,T,) such that fOT* Ck(t)dt < C for all & > 1, where
@ = infq pp. The third term is bounded above by

C [ (114 17411104 + o) 19t [V

b ~ —k . —k . 1 —
< DL+ CoT Rl |2, + 6|V 2, + ww’c“ﬁz

for some D*(t) € L'(0,T,) such that _fOT’“ DE(t)dt < C for k > 1. The last
term is bounded above by

~ ‘ g 1 L
Cl* - ol IVT* [} + 70 VT 3.
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Substituting all the above estimates into (98), we have

d
dt
99) < BE(IPT g + 10 + Va2

/pk-i-l,ﬂk-i-l,? dr +E'Vﬂk+1,%2

_— —_k & - _
+CO VRO 32 4+ 28|VE |52 + (Clp* — pol2ee + )| VE* |2,

for some EF(t) € L'(0,T,) such that [ E*(s)ds < C (1+&~¢t) for k> 1 and
0<t<T..
Finally, multiplying (95) by §k+1 and integrating over {1, we have

1 — —
5% c§+1pk+1|9k+1|2 dz +/ﬁ:0|V9k+1]2 dx

—k+1 —k+1
/I(cv)f+1|pk+1|9 2 + [Vt phtuk|g |2

VAN

HP I~ ch(of +u - Ve
+(ck ot @k vk

(100) kY — k| pFHL(|6E] + |uk || WOk )8
+rFH ~ nk||V9k||V§k+1|

12|kt — k||t 2

+|&F — ko||VE VB

+2pk (V| + |[Vek 1)) vak) 8" da.

Recall from (63) and (64) that
~ T* ~
¢, 2C7" and / (Ieo)i ™ (OlLs + IVey ™ (B)s) dt < C

0

for all k£ > 1. Hence arguing as before, we can show that the right hand side of
(100) is bounded above by

Fk (l—p-k-i—llQ R

k+1 artl 2 o k|2
24+ WG L) Cot fephor

. _ . 1 -
+ (16" = molde + 6) V8" 3= + C|Va* 3, + -2-§_|V9k+1|%2
for some F*(t) € L'(0,T,) such that fOT"‘ F*(s)ds < C for all ¥ > 1, where
k& = infq Kg. Substituting this estimate into (100), we obtain

(101) %/cﬁ“pk“@kHlQ dx +_ﬁ;[ |V§k+1|2 dx
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. , : . —k41
< F* (!ﬁ’““lig HIp T [y ekt g lig)

+C67 [ ckpko* 2. + (C‘]n"’ ~ Kol|% o + 25) }Vﬁkﬁg + C|\VT* |2,

Now for a small fixed £ > 0, let us define p* and * by

(Pk(t):mk(t)lig (D)7 + 1V pka" (£)[72 + eC™ [ ckpkd ()I%?
and .
V() = p| Va7 +eCT VO (1)
Then combining (96), (97), (99) and (101), we have
d i ket 1
—_ } f
A OPRtasl(
(102) < GER)EH () + C6 e oM (1)
+Ce™" (| (1) — ol T~ + |K5(8) = kolT +8) ¥ (1)
for some G¥(t) € L'(0,T.) such that fo G*(s)ds < C (1 +¢&~'t) for k > 1 and
0 <t <T,. But by virtue of (60), (74), (73) and Lemma 2.1, there is a small

number v = v(C) € (0,1) such that
15 (1) = pol2m + |65 (1) — kol2 e < Ct7 for tel0,T.].
Hence taking § = €2 in (102), we obtain

O+ M () S GENH (1) + Ce Pk (1) + C (6717 +€) wh (1),

which implies in view of Gronwall's inequality that

t
o) +/ () ds
Jo

t 1
< C (5_3/ P (s)ds + (6717 +¢) / ¥ (s) ds) exp (s'lét)
0 0

for 0 <t < T,. Therefore, if we choose ¢ and 77 so small that

C ( ”1T7 +¢) < 0<Ty <T, and exp (E_léTl) <2,

<1
4’
then we deduce that

t t t
M0+ [ ds<C [ pterds+ g [ uke)ds
0 0 0

for k> 1and 0 <t <T7Ty. Fixing a large K > 1, we sum thisover 1 < k < K
to yield

i t [ K
Z ( AL / vt (s) ds) < C’+C'/ (Z ’UJHI(S)) ds.
0 0 \k=1

k=1
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Using Gronwall’s inequality again, we finally have
oo T 3
Z( sup " (1) +/ ML) dt) <C,
k=1 0<t<T} 0
which implies obviously that
pF = pin L®(0,T1; L7 NL?) and (u*,6%) = (u,0) in L2(0,Ty; DY)

as k — oo for some limits p,u and 6. By virtue of this strong convergence, one
easily verify that (p,u,#) is a weak solution to the original nonlinear problem
(1)-(5) for some pressure p. Moreover, it follows from the uniform bound (92)
that

pe L0, Ty; Lz A H nWY9), p, € L°°(0,Ty; L2 N L9),
(u,8) € L>=(0,Ty; D} n D?)n L*(0,T,; D*9),
p € L®(0,Ty; H') N L*(0, Ty, Wh9),
(us,6;) € L?(0,Ty; Dy) and  (y/pus,+/p8:) € L=(0,Ty; L?).

(103)

4.3. Continuity and uniqueness

The proof of the continuity of p is standard and omitted; see the papers
[5, 6] and [7]. To prove the continuity of (u, p, 8), we first observe that

(u,8) € C([0,T1]; DY) n C ([0, Ty]; D? —weak).
Then by virtue of Sobolev inequality, we deduce that
(u,8) € C([0,T}]; Dy N DY) — C([0,Ty] x Q),
which implies in particular that
(1, 8,¢,) € C[0,T1] x Q) and (Vu,Vk) € C([0,T1]; L?).

Here we denote ¢; = min(q,4) > 3.
For the continuity of (u, p), we first observe that (pu;); € L2(0,Ts; H;*). In
fact, from (3) we have

d
—{oue,whn, = (p(fe —ue - Vu—u- V) + pu(f —u- Vu), wha,
+(2pedu + 2pdus, Vw)pz < H(t)|w| g

for some positive function H(t) € L?(0,T) and for all w € Hj ,. Hence
it follows from the well-known result (see Chapter 3 in [27]) that (pui): €
L2(0,Ty; H; ') and & {pus, w)n, = {(put)s, w)n, . Then since

pus € L>=(0,T,; L*) and L? < H]',

it follows from the standard embedding results that pu, € C([0,Ty], H; ') N
C([0,T.]; L*—weak). Moreover, from the identity (66) with u instead of v, we
deduce that the function t — |\/pu.(t)|3. is continuous on [0,T,]. Therefore,
recalling that p € C([0,T.]; W %), we conclude that pu; € C([0,T%], L?).
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Now observe that for each ¢ € [0,7%], v = u(t) € Dg , N D? is a solution of
the stationary Stokes equations

—div(2udu) +Vp=F and divu=0 in £,

where F' = pf — pus— pu-Vu € C([0,7.],L?). The continuity of F in L? follows
from the already known continuity properties of p and u. Then following the
argument for the proof of Lemma 2.8, we easily deduce the continuity of (u, p).
For details see Section 3.2 of [6].

Now we prove the uniqueness. Suppose that p;,u;,p;,8;(i = 1,2) are the
solutions of the equations (2)-(3). Then letting p = p1 — p2, & = U1 — Us,
7 =p1 —p2 and § = 6, — 65, the differences of solutions satisfy the following
equations:

(104) o, =Vp-ur+Vpy-u
(105) P + prug Vu+ p1u - Vug — le(?ﬂldﬁ) + Vp
= pf — p(u2)e — pua - Vuy + div(2pdus),
Cv,l(plgt —+ prug - V@) — diV(Kl V—g)
(106) = 2fi|dus|* 4 21 (|dur [* — |duz]?) + ph
— ¢y, 1(P(02)s + puy - Vo + poti - V)
— a(pg (92)f + JIOXID V@g) + le(Evgg),
where

A= 1 — M2, K=K — K2, Cy==Cy1—Cy2

i = u{pi,pif;) for i=1,2 and etc.

By the similar method to the proof of convergence in Section 4.2, we can easily
derive that

d
=73 + 1pl72) < Clpl 3 + [p[72) + (40) 7! |Vl
3;|\/5Tﬁ|m + vl
(107) < EWM(PP g + 16l + lailalTe + 1Vei0l7),
d - ~ -
a—t- +/Cu, 1p19|%2 + C'_]' |V6|i2
< F(PP g +1pl72 + [Veibl1) + CVal.,

where I and F' are some functions such that fOT"“ (E(t) + F(t))dt < C. Letting

V() =7l 3 + [ple + Woralhs + L 55 VAl
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and combining (107), we obtain

U(t) < é/t U(s)ds
0

for all ¢t € [0,T,]. Thus Gronwall’s inequality yields that

P = 0, pr1u = 0, plg = 0.

Therefore the uniqueness follows from (107).
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