• Title/Summary/Keyword: InSn solder

Search Result 459, Processing Time 0.024 seconds

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

Prediction of the Impact Lifetime for Board-Leveled Flip Chips by Changing the Design Parameters of the Solder Balls (플립칩의 설계변수 변화에 따른 보드레벨 플립칩에서의 낙하충격 수명예측)

  • Lee, Soo Jin;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.117-123
    • /
    • 2015
  • The need for drop simulations for board-leveled flip chips in micro-system packaging has been increasing. There have been many studies on flip chips with various solder ball compositions. However, studies on flip chips with Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu have rarely been attempted because of the unknown material properties. According to recent studies, drop simulations with these solder ball compositions have proven feasible. In this study, predictions of the impact lifetime by drop simulations are performed considering Cu and Cu/Ni UBMs using LS-DYNA to alter the design parameters of the flip chips, such as thickness of the flip chip and size of the solder ball. It was found that a smaller chip thickness, larger solder ball diameter, and using the Cu/Ni UBM can improve the drop lifetime of solder balls.

Evaluation of the Joint Strength of Lead-free Solder Ball Joints at High Strain Rates (고속 변형률 속도에서의 무연 솔더 볼 연결부의 강도 평가)

  • Joo, Se-Min;Kim, Taek-Young;Lim, Woong;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.7-13
    • /
    • 2012
  • A lack of study on the dynamic tensile strengths of Sn-based solder joints at high strain rates was the motivation for the present study. A modified miniature Charpy impact testing machine instrumented with an impact sensor was built to quantitatively evaluate the dynamic impact strength of a solder joint under tensile impact loading. This study evaluated the tensile strength of lead-free solder ball joints at strain rates from $1.8{\times}10^3s^{-1}$ and $8.5{\times}10^3s^{-1}$. The maximum tensile strength of the solder ball joint decreases as the load speed increases in the testing range. This tensile strength represented that of the interface because of the interfacial fracture site. The tensile strengths of solder joints between Sn-3.0Ag-0.5Cu and copper substrate were between 21.7 MPa and 8.6 MPa in the high strain range.

Reaction Characteristics between In-l5Pb-5Ag Solder and Au/Ni Surface Finish and Reliability Evaluation of Solder Joint (In-l5Pb-5Ag 솔더와 Au/Ni Surface Finish와의 반응 특성 및 접합 신뢰성 평가)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The metallurgical reaction properties between the pad consisted of 0.5 $\mu\textrm{m}$Au/5 $\mu\textrm{m}$Ni/Cu layers on a conventional ball grid array (BGA) substrate and In-15 (wt.%)Pb-5Ag solder ball were characterized during the reflow process and solid aging. During the reflow process of 1 to 5 minutes, it was observed that thin $AuIn_2$ or Ni-In intermetallic layer was formed at the interface of solder/pad. The dissolution rate of the Au layer into the molten solder was about $2\times 10^{-3}$ $\mu\textrm{m}$/sec which is remarkably low in comparison with a eutectic Sn-37Pb solder. After solid aging treatment for 500 hrs at $130^{\circ}C$, the thickness of $Ni_{28}In_{72}$ intermetallic layer was increased to about 3 $\mu\textrm{m}$ in all the conditions nevertheless the initial reflow time was different. These result show that In atoms in the solder alloy were diffused through the $AuIn_2$ phase to react with underlaying Ni layer during solid aging treatment. From the microstructural observation and shear tests, the reaction properties between In-15Pb-5Ag alloy and Au/Ni surface finish were analyzed not to trigger Au-embrittlement in the solder joints unlike Sn-37Pb composition.

  • PDF

A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder (Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구)

  • Jeon, Yu-Jae;Son, Sun-Ik;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

Board Level Drop Simulations and Modal Analysis in the Flip Chips with Solder Balls of Sn-1.0Ag-0.5Cu Considering Underfill (언더필을 고려한 Sn-1.0Ag-0.5Cu 조성의 솔더볼을 갖는 플립칩에서의 보드레벨 낙하 및 진동해석)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.225-231
    • /
    • 2012
  • Drop simulations of the board level in the flip chips with solder joints have been highlighted for years, recently. Also, through the study on the life prediction of thermal fatigue in the flip chips considering underfill, its importance has been issued greatly. In this paper, dynamic analysis using the implicit method in the Finite Element Analysis (FEA) is carried out to assess the factors effecting on flip chips considering underfill. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard is modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. Modal analysis is simulated to find out the relation between drop impact and vibration of the board system.

Wetting Characteristic of Solder Particle for Electrically Conductive Adhesive (도전성 접착제에서의 솔더입자의 젖음 특성)

  • Yang, Gyeong-Cheon;Jo, Sang-Hyeon;Jo, Yun-Seong;Lee, Seon-Byeong;Lee, Seong-Hyeok;Sin, Yeong-Ui;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.175-177
    • /
    • 2006
  • Electrically Conductive Adhesives(ECAs) with solderable particles have been developed as an alternative to Pb-free solders. Our previous study proved that good wettability of solder particle is a prerequisite for the establishment of conduction paths. In this paper, two types of ECAs were formulated and the wetting characteristic low-melting-point Sn-In solder on Cu and Ni/Au pads was investigated. It was found that Sn-In solder in the developed resin material with reduction capability shows good wettability, especially on Cu pad.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

Fatigue Crack Propagation Behavior of Sn-3.0Ag-0.5Cu Solder Material (Sn-3.0Ag-0.5Cu 솔더재료의 피로 균열진전에 관한 연구)

  • Woo, Tae-Wuk;Kim, Kwang-Soo;Sakane, Masao;Kobayashi, Kaoru
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.333-337
    • /
    • 2008
  • This study investigates crack propagation behavior of Sn-3.0Ag-0.5Cu solder under pull-push loading conditions. Fatigue Crack Growth (FCG) tests were conducted on Center Cracked Plate (CCP) specimens in fast-fast (pp) strain waveform. The fast-slow (pc), slow-fast (cp) and slow-slow (cc) strain waveforms were also used to study the effect of strain rates. The crack propagation rates for the four strain waveforms were correlated with J-integral range and a scatter band of factor 4 was found. The crack growth rates for the pc waveform was highest, followed by cp, cc and then pp waveforms.

  • PDF