• Title/Summary/Keyword: InGaAs/InAlAs

Search Result 720, Processing Time 0.03 seconds

Effects of Low Power Laser for the Expression of EGF after Muscle Crush Injury (저강도레이저 조사가 근육압좌손상 후 척수분절의 EGF 발현에 미치는 영향)

  • Kim Souk-Boum;Kim Dong-Hyun;Nam Ki-Won;Lee Sun-Min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.16-25
    • /
    • 2002
  • Low energy laser irradiation(LELI) therapy in physical therapy is widespread but the mechanisms are not fully understood. The purpose of the present study was to examine the epidermal growth factor(EGF)'s expression within lumbar spinal cord which corresponding with crushed extensor digitorum longus(EDL) of rats after low-power laser irradiation applied. After a crushed injury on the right EDL, low-power laser irradiation was applied by using 2000mW, 2000Hz, 830nm GaAlAs(Gallium-aluminum-arsenide) semiconductor diode laser. The laser treatment was performed with 10 minutes daily for 3days. After EDL crush injury, EGF immunoreactive positive neurons in experimental group were progressively decreased from the first to third days. Especially 1 day subgroup is highly expressed in dorsal horn(Lamina I, II, III) and around of central cannal of spinal cord(Lamina VII). Control group was only expressed slightly at 3 days. This study suggests that LELI stimulate that release and migration of EGF in spinal cord, which distict to wound site, therfore promote wound healing of EDL crush injury.

  • PDF

The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer

  • Luyi Cheng;TianshuoYang;Jun Zhang;Feng Gao;Lingyun Yang;Weijing Tao
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.574-589
    • /
    • 2023
  • Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.

Optogalvanic Spectroscopy of U, Th and Rb using Diode Lasers (반도체 다이오드 레이저를 사용한 U, Th 및 Rb 의 Optogalvanic Spectroscopy 에 관한 연구)

  • Lee, Sang Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • First observation of uranium using a diode laser was published recently. The experiment was performed by the optogalvanic spectroscopy using diode lasers. A laser source causes the current change in a hollow cathode discharge lamp when metal atoms in plasma absorb the diode laser light. The optogalvanic signal is collected by detecting the current change. This work is the extended investigation of our previous research, the uranium detection using a diode laser. New electronic transitions of uranium and thorium in 775∼850 nm were investigated using diode lasers. In addition, the Rb(Ⅰ) optogalvanic spectra at 780.02 nm and 794.76 nm were studied. The Rb(Ⅰ) spectrum at 780.02 nm showed the isotopic features and hyperfine splittings. This work provides a key idea that the diode lasers are useful in the specrochemical analysis of the radioactive actinides that have a rich spectrum with transitions which can be easily reached with AlGaAs diode lasers. Also, this study shows that the diode lasers can be an important tool to find the spectroscopic parameters of actinides and rare earth elements which have not known.

  • PDF

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Effectiveness of low-level laser therapy and chewing gum in reducing orthodontic pain: A randomized controlled trial

  • Celebi, Fatih;Bicakci, Ali Altug;Kelesoglu, Ufuk
    • The korean journal of orthodontics
    • /
    • v.51 no.5
    • /
    • pp.313-320
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the effects of chewing gum and low-level laser therapy in alleviating orthodontic pain induced by the initial archwire. Methods: Patients with 3-6 mm maxillary crowding who planned to receive non-extraction orthodontic treatment were recruited for the study. Sixty-three participants (33 females and 30 males) were randomly allocated into three groups: laser, chewing gum, and control. In the laser group, a gallium aluminum arsenide (GaAlAs) diode laser with a wavelength of 820 nm was used to apply a single dose immediately after orthodontic treatment began. In the chewing gum group, sugar-free gum was chewed three times for 20 minutes-immediately after starting treatment, and at the twenty-fourth and forty-eighth hours of treatment. Pain perception was measured using a visual analog scale at the second, sixth, and twenty-fourth hours, and on the second, third, and seventh days. Results: There were no statistically significant differences between the groups at any measured time point (p > 0.05). The highest pain scores were detected at the twenty-fourth hour of treatment in all groups. Conclusions: Within the limitations of the study, we could not detect whether low-level laser therapy and chewing gum had any clinically significant effect on orthodontic pain. Different results may be obtained with a higher number of participants or using lasers with different wavelengths and specifications. Although the study had a sufficient number of participants according to statistical analysis, higher number of participants could have provided more definitive outcomes.

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Design and Analysis of a Laser Lift-Off System using an Excimer Laser (엑시머 레이저를 사용한 LLO 시스템 설계 및 분석)

  • Kim, Bo Young;Kim, Joon Ha;Byeon, Jin A;Lee, Jun Ho;Seo, Jong Hyun;Lee, Jong Moo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Laser Lift-Off (LLO) is a process that removes a GaN or AIN thin layer from a sapphire wafer to manufacture vertical-type LEDs. It consists of a light source, an attenuator, a mask, a projection lens and a beam homogenizer. In this paper, we design an attenuator and a projection lens. We use the 'ZEMAX' optical design software for analysis of depth of focus and for a projection lens design which makes $7{\times}7mm^2$ beam size by projecting a beam on a wafer. Using the 'LightTools' lighting design software, we analyze the size and uniformity of the beam projected by the projection lens on the wafer. The performance analysis found that the size of the square-shaped beam is $6.97{\times}6.96mm^2$, with 91.8 % uniformity and ${\pm}30{\mu}m$ focus depth. In addition, this study performs dielectric coating using the 'Essential Macleod' to increase the transmittance of an attenuator. As a result, for 23 layers of thin films, the transmittance total has 10-96% at angle of incidence $45-60^{\circ}$ in S-polarization.

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.

Analysis of Electrical/optical Characteristics Using Asymmetric MQW Structures for Deep-UV LEDs (비대칭 MQW 구조를 이용한 Deep-UV LED의 전기적/광학적 특성)

  • Son, Sung-Hun;Kim, Su-Jin;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.5
    • /
    • pp.10-15
    • /
    • 2012
  • In this work, we proposed the asymmetric MQW structure with gradually increased or decreased well thickness from n-layers to p-layers in order to improve the performance of DUV-LEDs. We report the simulation results of electrical/optical characteristics by using the SimuLED program. From the simulation results, we found that B structure with thickness of the wells gradually increased from the n-side to the p-side has the same forward voltage(Vf) as standard structure, but the light output power (Pout) was improved by a factor of 1.17 at 20mA compared with those of the standard structure.

Effect of low-level laser therapy on bisphosphonate-treated osteoblasts

  • Shin, Sang-Hun;Kim, Ki-Hyun;Choi, Na-Rae;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok;Kim, Uk-Kyu;Kim, Cheol-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.48.1-48.8
    • /
    • 2016
  • Background: This study investigates the effect of alendronate-treated osteoblasts, as well as the effect of low-level laser therapy (LLLT) on the alendronate-treated osteoblasts. Bisphosphonate decreases the osteoblastic activity. Various treatment modalities are used to enhance the bisphosphonate-treated osteoblasts; however, there were no cell culture studies conducted using a low-level laser. Methods: Human fetal osteoblastic (hFOB 1.19) cells were treated with $50{\mu}M$ alendronate. Then, they were irradiated with a $1.2J/cm^2$ low-level Ga-Al-As laser (${\lambda}=808{\pm}3nm$, 80 mW, and 80 mA; spot size, $1 cm^2$; NDLux, Seoul, Korea). The cell survivability was measured with the MTT assay. The three cytokines of osteoblasts, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF) were analyzed. Results: In the cells treated with alendronate at concentrations of $50{\mu}M$ and higher, cell survivability significantly decreased after 48 h (p < 0.05). After the applications of low-level laser on alendronate-treated cells, cell survivability significantly increased at 72 h (p < 0.05). The expressions of OPG, RANKL, and M-CSF have decreased via the alendronate. The RANKL and M-CSF expressions have increased, but the OPG was not significantly affected by the LLLT. Conclusions: The LLLT does not affect the OPG expression in the hFOB cell line, but it may increase the RANKL and M-CSF expressions, thereby resulting in positive effects on osteoclastogenesis and bone remodeling.