DOI QR코드

DOI QR Code

The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer

  • Luyi Cheng (Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University) ;
  • TianshuoYang (Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University) ;
  • Jun Zhang (Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University) ;
  • Feng Gao (Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University) ;
  • Lingyun Yang (JYAMS PET Research and Development Limited) ;
  • Weijing Tao (Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University)
  • Received : 2022.12.21
  • Accepted : 2023.03.30
  • Published : 2023.06.01

Abstract

Radiopharmaceuticals targeting prostate-specific membrane antigens (PSMA) are essential for the diagnosis, evaluation, and treatment of prostate cancer (PCa), particularly metastatic castration-resistant PCa, for which conventional treatment is ineffective. These molecular probes include [68Ga]PSMA, [18F]PSMA, [Al18F]PSMA, [99mTc]PSMA, and [89Zr]PSMA, which are widely used for diagnosis, and [177Lu]PSMA and [225Ac]PSMA, which are used for treatment. There are also new types of radiopharmaceuticals. Due to the differentiation and heterogeneity of tumor cells, a subtype of PCa with an extremely poor prognosis, referred to as neuroendocrine prostate cancer (NEPC), has emerged, and its diagnosis and treatment present great challenges. To improve the detection rate of NEPC and prolong patient survival, many researchers have investigated the use of relevant radiopharmaceuticals as targeted molecular probes for the detection and treatment of NEPC lesions, including DOTA-TOC and DOTA-TATE for somatostatin receptors, 4A06 for CUB domain-containing protein 1, and FDG. This review focused on the specific molecular targets and various radionuclides that have been developed for PCa in recent years, including those mentioned above and several others, and aimed to provide valuable up-to-date information and research ideas for future studies.

Keywords

Acknowledgement

We thanks for the permissions from Springer, European Journal of Nuclear Medicine Molecular Imaging, Society of Nuclear Medicine and Molecular Imaging regarding permission to use figure/table in Kuten et al. [39], J Nucl Med 2020;61:527-532. We also thanks for the support from the Department of Urology and Pathology in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University. We thank James P. Mahaffey, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English expression of this manuscript.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72:7-33 https://doi.org/10.3322/caac.21708
  2. Dreyfuss AD, Ahn GS, Barsky AR, Gillman JA, Vapiwala N, Pantel AR. 18F-fluciclovine PET/CT in therapeutic decision making for prostate cancer: a large single-center practice-based analysis. Clin Nucl Med 2021;46:187-194 https://doi.org/10.1097/RLU.0000000000003444
  3. Tse BWC, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36:3417-3427 https://doi.org/10.1038/onc.2016.482
  4. Bakht MK, Derecichei I, Li Y, Ferraiuolo RM, Dunning M, Oh SW, et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer 2018;26:131-146 https://doi.org/10.1530/ERC-18-0226
  5. Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia 2020;22:566-575 https://doi.org/10.1016/j.neo.2020.09.002
  6. Li R, Ravizzini GC, Gorin MA, Maurer T, Eiber M, Cooperberg MR, et al. The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis 2018;21:4-21 https://doi.org/10.1038/s41391-017-0007-8
  7. Lundmark F, Abouzayed A, Mitran B, Rinne SS, Varasteh Z, Larhed M, et al. Heterodimeric radiotracer targeting PSMA and GRPR for imaging of prostate cancer-optimization of the affinity towards PSMA by linker modification in murine model. Pharmaceutics 2020;12:614
  8. Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med 2019;60(Suppl 2):13S-19S https://doi.org/10.2967/jnumed.118.220566
  9. Ruschoff JH, Ferraro DA, Muehlematter UJ, Laudicella R, Hermanns T, Rodewald AK, et al. What's behind (68)GaPSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters and immunohistochemical PSMA expression patterns. Eur J Nucl Med Mol Imaging 2021;48:4042-4053 https://doi.org/10.1007/s00259-021-05501-1
  10. Ferraro DA, Ruschoff JH, Muehlematter UJ, Kranzbuhler B, Muller J, Messerli M, et al. Immunohistochemical PSMA expression patterns of primary prostate cancer tissue are associated with the detection rate of biochemical recurrence with (68)Ga-PSMA-11-PET. Theranostics 2020;10:6082-6094 https://doi.org/10.7150/thno.44584
  11. Siow A, Kowalczyk R, Brimble MA, Harris PWR. Evolution of peptide-based prostate-specific membrane antigen (PSMA) inhibitors: an approach to novel prostate cancer therapeutics. Curr Med Chem 2021;28:3713-3752 https://doi.org/10.2174/0929867327666201006153847
  12. Afshar-Oromieh A, Sattler LP, Steiger K, Holland-Letz T, da Cunha ML, Mier W, et al. Tracer uptake in mediastinal and paraaortal thoracic lymph nodes as a potential pitfall in image interpretation of PSMA ligand PET/CT. Eur J Nucl Med Mol Imaging 2018;45:1179-1187 https://doi.org/10.1007/s00259-018-3965-8
  13. Parsi M, Desai MH, Desai D, Singhal S, Khandwala PM, Potdar RR. PSMA: a game changer in the diagnosis and treatment of advanced prostate cancer. Med Oncol 2021;38:89
  14. Klingenberg S, Jochumsen MR, Ulhoi BP, Fredsoe J, Sorensen KD, Borre M, et al. (68)Ga-PSMA PET/CT for primary lymph node and distant metastasis NM staging of high-risk prostate cancer. J Nucl Med 2021;62:214-220 https://doi.org/10.2967/jnumed.120.245605
  15. Wester HJ, Schottelius M. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med 2019;49:302-312
  16. Wang F, Li Z, Feng X, Yang D, Lin M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis 2022;25:11-26 https://doi.org/10.1038/s41391-021-00394-5
  17. van Boxtel W, Lutje S, van Engen-van Grunsven ICH, Verhaegh GW, Schalken JA, Jonker MA, et al. (68)Ga-PSMAHBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: a phase 2 imaging study. Theranostics 2020;10:2273-2283 https://doi.org/10.7150/thno.38501
  18. Okamoto I, Nokihara H, Nomura S, Niho S, Sugawara S, Horinouchi H, et al. Comparison of carboplatin plus pemetrexed followed by maintenance pemetrexed with docetaxel monotherapy in elderly patients with advanced nonsquamous non-small cell lung cancer: a phase 3 randomized clinical trial. JAMA Oncol 2020;6:e196828
  19. Domachevsky L, Goldberg N, Bernstine H, Nidam M, Groshar D. Quantitative characterisation of clinically significant intra-prostatic cancer by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11. Eur Radiol 2018;28:5275-5283 https://doi.org/10.1007/s00330-018-5484-1
  20. Alberto M, Yim A, Papa N, Siva S, Ischia J, Touijer K, et al. Role of PSMA PET-guided metastases-directed therapy in oligometastatic recurrent prostate cancer. Front Oncol 2022;12:929444
  21. Rauscher I, Duwel C, Haller B, Rischpler C, Heck MM, Gschwend JE, et al. Efficacy, predictive factors, and prediction nomograms for (68)Ga-labeled prostate-specific membrane antigen-ligand positron-emission tomography/computed tomography in early biochemical recurrent prostate cancer after radical prostatectomy. Eur Urol 2018;73:656-661 https://doi.org/10.1016/j.eururo.2018.01.006
  22. Iglesias-Gato D, Thysell E, Tyanova S, Crnalic S, Santos A, Lima TS, et al. The proteome of prostate cancer bone metastasis reveals heterogeneity with prognostic implications. Clin Cancer Res 2018;24:5433-5444 https://doi.org/10.1158/1078-0432.CCR-18-1229
  23. Plichta KA, Graves SA, Buatti JM. Prostate-specific membrane antigen (PSMA) theranostics for treatment of oligometastatic prostate cancer. Int J Mol Sci 2021;22:12095
  24. Murthy V, Sonni I, Jariwala N, Juarez R, Reiter RE, Raman SS, et al. The role of PSMA PET/CT and PET/MRI in the initial staging of prostate cancer. Eur Urol Focus 2021;7:258-266 https://doi.org/10.1016/j.euf.2021.01.016
  25. Barbato F, Fendler WP, Rauscher I, Herrmann K, Wetter A, Ferdinandus J, et al. PSMA-PET for the assessment of metastatic hormone-sensitive prostate cancer volume of disease. J Nucl Med 2021;62:1747-1750 https://doi.org/10.2967/jnumed.121.262120
  26. Dekalo S, Kuten J, Mintz I, Fahoum I, Gitstein G, Keizman D, et al. Preoperative 68Ga-PSMA PET/CT defines a subgroup of high-risk prostate cancer patients with favorable outcomes after radical prostatectomy and lymph node dissection. Prostate Cancer Prostatic Dis 2021;24:910-916 https://doi.org/10.1038/s41391-021-00347-y
  27. Pastorino S, Riondato M, Uccelli L, Giovacchini G, Giovannini E, Duce V, et al. Toward the discovery and development of PSMA targeted inhibitors for nuclear medicine applications. Curr Radiopharm 2020;13:63-79 https://doi.org/10.2174/1874471012666190729151540
  28. Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022;22:101450
  29. Witkowska-Patena E, Mazurek A, Dziuk M. 68Ga-PSMA PET/CT imaging in recurrent prostate cancer: where are we now? Cent European J Urol 2017;70:37-43
  30. Zhang LL, Li WC, Xu Z, Jiang N, Zang SM, Xu LW, et al. (68)Ga-PSMA PET/CT targeted biopsy for the diagnosis of clinically significant prostate cancer compared with transrectal ultrasound guided biopsy: a prospective randomized single-centre study. Eur J Nucl Med Mol Imaging 2021;48:483-492 https://doi.org/10.1007/s00259-020-04863-2
  31. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol 2019;5:856-863 https://doi.org/10.1001/jamaoncol.2019.0096
  32. Futterer JJ, Nagarajah J. Research highlight: (68)Ga-PSMA-11 PET imaging for pelvic nodal metastasis in prostate cancer. Korean J Radiol 2022;23:293-294 https://doi.org/10.3348/kjr.2021.0938
  33. Sonni I, Eiber M, Fendler WP, Alano RM, Vangala SS, Kishan AU, et al. Impact of (68)Ga-PSMA-11 PET/CT on staging and management of prostate cancer patients in various clinical settings: a prospective single-center study. J Nucl Med 2020;61:1153-1160 https://doi.org/10.2967/jnumed.119.237602
  34. Karyag˘ar S, Guven O, Karyag˘ar SS, Arici S, Selvi O, Geredeli C, et al. Can 68Ga-PSMA PET/CT-derived prostate-specific membrane antigen expression parameters predict prostate-specific antigen response to enzalutamide treatment? Nucl Med Commun 2021;42:1011-1016 https://doi.org/10.1097/MNM.0000000000001431
  35. Meyrick DP, Asokendaran M, Skelly LA, Lenzo NP, Henderson A. The role of 68Ga-PSMA-I&T PET/CT in the pretreatment staging of primary prostate cancer. Nucl Med Commun 2017;38:956-963 https://doi.org/10.1097/MNM.0000000000000738
  36. Cytawa W, Seitz AK, Kircher S, Fukushima K, Tran-Gia J, Schirbel A, et al. (68)Ga-PSMA I&T PET/CT for primary staging of prostate cancer. Eur J Nucl Med Mol Imaging 2020;47:168-177 https://doi.org/10.1007/s00259-019-04524-z
  37. de Kouchkovsky I, Aggarwal R, Hope TA. Prostate-specific membrane antigen (PSMA)-based imaging in localized and advanced prostate cancer: a narrative review. Transl Androl Urol 2021;10:3130-3143 https://doi.org/10.21037/tau-20-1047
  38. Meyer C, Prasad V, Stuparu A, Kletting P, Glatting G, Miksch J, et al. Comparison of PSMA-TO-1 and PSMA-617 labeled with gallium-68, lutetium-177 and actinium-225. EJNMMI Res 2022;12:65
  39. Kuten J, Fahoum I, Savin Z, Shamni O, Gitstein G, Hershkovitz D, et al. Head-to-head comparison of (68)Ga-PSMA-11 with (18)F-PSMA-1007 PET/CT in staging prostate cancer using histopathology and immunohistochemical analysis as a reference standard. J Nucl Med 2020;61:527-532 https://doi.org/10.2967/jnumed.119.234187
  40. Piron S, Verhoeven J, Vanhove C, De Vos F. Recent advancements in (18)F-labeled PSMA targeting PET radiopharmaceuticals. Nucl Med Biol 2022;106-107:29-51 https://doi.org/10.1016/j.nucmedbio.2021.12.005
  41. Evangelista L, Maurer T, van der Poel H, Alongi F, Kunikowska J, Laudicella R, et al. [(68)Ga]Ga-PSMA versus [(18)F] PSMA positron emission tomography/computed tomography in the staging of primary and recurrent prostate cancer. A systematic review of the literature. Eur Urol Oncol 2022;5:273-282 https://doi.org/10.1016/j.euo.2022.03.004
  42. Sprute K, Kramer V, Koerber SA, Meneses M, Fernandez R, Soza-Ried C, et al. Diagnostic accuracy of (18)F-PSMA-1007 PET/CT imaging for lymph node staging of prostate carcinoma in primary and biochemical recurrence. J Nucl Med 2021;62:208-213 https://doi.org/10.2967/jnumed.120.246363
  43. Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med 2019;60:362-368 https://doi.org/10.2967/jnumed.118.212233
  44. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 2017;44:678-688 https://doi.org/10.1007/s00259-016-3573-4
  45. Iravani A, Parihar AS, Akhurst T, Hicks RJ. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022;22:25
  46. Pan KH, Wang JF, Wang CY, Nikzad AA, Kong FQ, Jian L, et al. Evaluation of 18F-DCFPyL PSMA PET/CT for prostate cancer: a meta-analysis. Front Oncol 2020;10:597422
  47. Sun J, Lin Y, Wei X, Ouyang J, Huang Y, Ling Z. Performance of 18F-DCFPyL PET/CT imaging in early detection of biochemically recurrent prostate cancer: a systematic review and meta-analysis. Front Oncol 2021;11:649171
  48. Hohberg M, Kobe C, Krapf P, Tager P, Hammes J, Dietlein F, et al. Biodistribution and radiation dosimetry of [(18)F]-JK-PSMA-7 as a novel prostate-specific membrane antigen-specific ligand for PET/CT imaging of prostate cancer. EJNMMI Res 2019;9:66
  49. Morris MJ, Rowe SP, Gorin MA, Saperstein L, Pouliot F, Josephson D, et al. Diagnostic performance of (18)F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin Cancer Res 2021;27:3674-3682
  50. Zlatopolskiy BD, Endepols H, Krapf P, Guliyev M, Urusova EA, Richarz R, et al. Discovery of (18)F-JK-PSMA-7, a PET probe for the detection of small PSMA-positive lesions. J Nucl Med 2019;60:817-823 https://doi.org/10.2967/jnumed.118.218495
  51. Dietlein F, Hohberg M, Kobe C, Zlatopolskiy BD, Krapf P, Endepols H, et al. An (18)F-labeled PSMA ligand for PET/CT of prostate cancer: first-in-humans observational study and clinical experience with (18)F-JK-PSMA-7 during the first year of application. J Nucl Med 2020;61:202-209 https://doi.org/10.2967/jnumed.119.229542
  52. Liu T, Liu C, Xu X, Liu F, Guo X, Li N, et al. Preclinical evaluation and pilot clinical study of Al(18)F-PSMA-BCH for prostate cancer PET imaging. J Nucl Med 2019;60:1284-1292 https://doi.org/10.2967/jnumed.118.221671
  53. Piron S, Verhoeven J, De Coster E, Descamps B, Kersemans K, Pieters L, et al. Impact of the molar activity and PSMA expression level on [(18)F]AlF-PSMA-11 uptake in prostate cancer. Sci Rep 2021;11:22623
  54. Ioppolo JA, Nezich RA, Richardson KL, Morandeau L, Leedman PJ, Price RI. Direct in vivo comparison of [(18) F]PSMA-1007 with [(68)Ga]Ga-PSMA-11 and [(18)F]AlFPSMA-11 in mice bearing PSMA-expressing xenografts. Appl Radiat Isot 2020;161:109164
  55. Mix M, Schultze-Seemann W, von Buren M, Sigle A, Omrane MA, Grabbert MT, et al. (99m)Tc-labelled PSMA ligand for radio-guided surgery in nodal metastatic prostate cancer: proof of principle. EJNMMI Res 2021;11:22
  56. Fallahi B, Khademi N, Karamzade-Ziarati N, Fard-Esfahani A, Emami-Ardekani A, Farzanefar S, et al. 99mTc-PSMA SPECT/ CT versus 68Ga-PSMA PET/CT in the evaluation of metastatic prostate cancer. Clin Nucl Med 2021;46:e68-e74 https://doi.org/10.1097/RLU.0000000000003410
  57. Sergieva S, Mangaldgiev R, Dimcheva M, Nedev K, Zahariev Z, Robev B. SPECT-CT imaging with [99mTc]PSMA-T4 in patients with recurrent prostate cancer. Nucl Med Rev Cent East Eur 2021;24:70-81 https://doi.org/10.5603/NMR.2021.0018
  58. Kabunda J, Gabela L, Kalinda C, Aldous C, Pillay V, Nyakale N. Comparing 99mTc-PSMA to 99mTc-MDP in prostate cancer staging of the skeletal system. Clin Nucl Med 2021;46:562-568 https://doi.org/10.1097/RLU.0000000000003702
  59. Werner P, Neumann C, Eiber M, Wester HJ, Schottelius M. [(99cm)Tc]Tc-PSMA-I&S-SPECT/CT: experience in prostate cancer imaging in an outpatient center. EJNMMI Res 2020;10:45
  60. Dietlein F, Kobe C, Vazquez SM, Fischer T, Endepols H, Hohberg M, et al. An 89Zr-labeled PSMA tracer for PET/CT imaging of prostate cancer patients. J Nucl Med 2022;63:573-583 https://doi.org/10.2967/jnumed.121.262290
  61. Vlachostergios PJ, Niaz MJ, Thomas C, Christos PJ, Osborne JR, Margolis DJA, et al. Pilot study of the diagnostic utility of (89) Zr-df-IAB2M and (68) Ga-PSMA-11 PET imaging and multiparametric MRI in localized prostate cancer. Prostate 2022;82:483-492
  62. Barrio M, Fendler WP, Czernin J, Herrmann K. Prostate specific membrane antigen (PSMA) ligands for diagnosis and therapy of prostate cancer. Expert Rev Mol Diagn 2016;16:1177-1188 https://doi.org/10.1080/14737159.2016.1243057
  63. Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H. PSMA Theranostics: current status and future directions. Mol Imaging 2018;17:1536012118776068
  64. Hennrich U, Eder M. [(177)Lu]Lu-PSMA-617 (Pluvicto(TM)): The first FDA-approved radiotherapeutical for treatment of prostate cancer. Pharmaceuticals (Basel) 2022;15:1292
  65. Hofman MS, Emmett L, Sandhu S, Iravani A, Joshua AM, Goh JC, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 2021;397:797-804
  66. Banerjee SR, Kumar V, Lisok A, Chen J, Minn I, Brummet M, et al. (177)Lu-labeled low-molecular-weight agents for PSMA-targeted radiopharmaceutical therapy. Eur J Nucl Med Mol Imaging 2019;46:2545-2557 https://doi.org/10.1007/s00259-019-04434-0
  67. Schuchardt C, Zhang J, Kulkarni HR, Chen X, Muller D, Baum RP. Prostate-specific membrane antigen radioligand therapy using (177)Lu-PSMA I&T and (177)Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: comparison of safety, biodistribution, and dosimetry. J Nucl Med 2022;63:1199-1207
  68. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 2016;57:1941-1944 https://doi.org/10.2967/jnumed.116.178673
  69. Alam MR, Singh SB, Thapaliya S, Shrestha S, Deo S, Khanal K. A review of 177Lutetium-PSMA and 225Actinium-PSMA as emerging theranostic agents in prostate cancer. Cureus 2022;14:e29369
  70. Sanli Y, Kuyumcu S, Simsek DH, Buyukkaya F, Civan C, Isik EG, et al. 225Ac-prostate-specific membrane antigen therapy for castration-resistant prostate cancer: a single-center experience. Clin Nucl Med 2021;46:943-951 https://doi.org/10.1097/RLU.0000000000003925
  71. Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, et al. Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 2017;58:1624-1631 https://doi.org/10.2967/jnumed.117.191395
  72. Liu Y, Zhang X, Liu J, Zhang J, Xu B. Prospective intraindividual comparison of 18F-PSMA-7Q and 18F-DCFPyL PET/CT in patients with newly diagnosed prostate cancer. Nucl Med Commun 2022;43:725-730 https://doi.org/10.1097/MNM.0000000000001564
  73. Mix M, Reichel K, Stoykow C, Bartholoma M, Drendel V, Gourni E, et al. Performance of (111)In-labelled PSMA ligand in patients with nodal metastatic prostate cancer: correlation between tracer uptake and histopathology from lymphadenectomy. Eur J Nucl Med Mol Imaging 2018;45:2062-2070 https://doi.org/10.1007/s00259-018-4094-0
  74. Green MA, Hutchins GD, Bahler CD, Tann M, Mathias CJ, Territo W, et al. [(68)Ga]Ga-P16-093 as a PSMA-targeted PET radiopharmaceutical for detection of cancer: initial evaluation and comparison with [(68)Ga]Ga-PSMA-11 in prostate cancer patients presenting with biochemical recurrence. Mol Imaging Biol 2020;22:752-763
  75. Suh M, Ryoo HG, Kang KW, Jeong JM, Jeong CW, Kwak C, et al. Phase I clinical trial of prostate-specific membrane antigen-targeting (68)Ga-NGUL PET/CT in healthy volunteers and patients with prostate cancer. Korean J Radiol 2022;23:911-920 https://doi.org/10.3348/kjr.2022.0176
  76. Boinapally S, Lisok A, Lofland G, Minn I, Yan Y, Jiang Z, et al. Hetero-bivalent agents targeting FAP and PSMA. Eur J Nucl Med Mol Imaging 2022;49:4369-4381 https://doi.org/10.1007/s00259-022-05933-3
  77. Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep 2021;23:15
  78. Parida GK, Tripathy S, Datta Gupta S, Singhal A, Kumar R, Bal C, et al. Adenocarcinoma prostate with neuroendocrine differentiation: potential utility of 18F-FDG PET/CT and 68GaDOTANOC PET/CT over 68Ga-PSMA PET/CT. Clin Nucl Med 2018;43:248-249 https://doi.org/10.1097/RLU.0000000000002013
  79. Arora K, Barbieri CE. Molecular subtypes of prostate cancer. Curr Oncol Rep 2018;20:58
  80. Kitajima K, Yamamoto S, Ikeda M, Yamasaki T, Kawanaka Y, Komoto H, et al. Pelvic MRI, FDG-PET/CT, and somatostatin receptor scintigraphy findings of treatment-related neuroendocrine-differentiated prostate cancer. Case Rep Oncol 2021;14:397-402 https://doi.org/10.1159/000511070
  81. Bakht MK, Lovnicki JM, Tubman J, Stringer KF, Chiaramonte J, Reynolds MR, et al. Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for (18)F-FDG imaging of PSMA-suppressed tumors. J Nucl Med 2020;61:904-910 https://doi.org/10.2967/jnumed.119.231068
  82. Zhao N, Chopra S, Trepka K, Wang YH, Sakhamuri S, Hooshdaran N, et al. CUB domain-containing protein 1 (CDCP1) is a target for radioligand therapy in castration-resistant prostate cancer, including PSMA null disease. Clin Cancer Res 2022;28:3066-3075 https://doi.org/10.1158/1078-0432.CCR-21-3858
  83. Wu W, Yu F, Zhang P, Bu T, Fu J, Ai S, et al. (68)Ga-DOTA-NT-20.3 neurotensin receptor 1 positron emission tomography imaging as a surrogate for neuroendocrine differentiation of prostate cancer. J Nucl Med 2022;63:1394-1400 https://doi.org/10.2967/jnumed.121.263132
  84. Wang B, Liu C, Wei Y, Meng J, Zhang Y, Gan H, et al. A Prospective Trial of (68)Ga-PSMA and (18)F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin Cancer Res 2020;26:4551-4558 https://doi.org/10.1158/1078-0432.CCR-20-0587
  85. Zhou X, Li Y, Jiang X, Wang X, Chen S, Shen T, et al. Intra-individual comparison of 18F-PSMA-1007 and 18F-FDG PET/CT in the evaluation of patients with prostate cancer. Front Oncol 2020;10:585213
  86. Khreish F, Rosar F, Kratochwil C, Giesel FL, Haberkorn U, Ezziddin S. Positive FAPI-PET/CT in a metastatic castration-resistant prostate cancer patient with PSMA-negative/FDG-positive disease. Eur J Nucl Med Mol Imaging 2020;47:2040-2041 https://doi.org/10.1007/s00259-019-04623-x
  87. Shen K, Liu B, Zhou X, Ji Y, Chen L, Wang Q, et al. The evolving role of (18)F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancer. Front Oncol 2021;11:683793
  88. Chen R, Wang Y, Shi Y, Zhu Y, Xu L, Huang G, et al. Diagnostic value of (18)F-FDG PET/CT in patients with biochemical recurrent prostate cancer and negative (68)Ga-PSMA PET/CT. Eur J Nucl Med Mol Imaging 2021;48:2970-2977 https://doi.org/10.1007/s00259-021-05221-6
  89. Kesch C, Yirga L, Dendl K, Handke A, Darr C, Krafft U, et al. High fibroblast-activation-protein expression in castration-resistant prostate cancer supports the use of FAPI-molecular theranostics. Eur J Nucl Med Mol Imaging 2021;49:385-389 https://doi.org/10.1007/s00259-021-05423-y
  90. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 2019;60:801-805 https://doi.org/10.2967/jnumed.119.227967
  91. Isik EG, Has-Simsek D, Sanli O, Sanli Y, Kuyumcu S. Fibroblast activation protein-targeted PET imaging of metastatic castration-resistant prostate cancer compared with 68GaPSMA and 18F-FDG PET/CT. Clin Nucl Med 2022;47:e54-e55 https://doi.org/10.1097/RLU.0000000000003837
  92. Park SY, Na SJ, Kumar M, Mosci C, Wardak M, Koglin N, et al. Clinical evaluation of (4S)-4-(3-[(18)F]Fluoropropyl)-L-glutamate ((18)F-FSPG) for PET/CT imaging in patients with newly diagnosed and recurrent prostate cancer. Clin Cancer Res 2020;26:5380-5387 https://doi.org/10.1158/1078-0432.CCR-20-0644
  93. Edwards R, Greenwood HE, McRobbie G, Khan I, Witney TH. Robust and facile automated radiosynthesis of [(18)F]FSPG on the GE FASTlab. Mol Imaging Biol 2021;23:854-864 https://doi.org/10.1007/s11307-021-01609-w
  94. Shih KT, Huang YY, Yang CY, Cheng MF, Tien YW, Shiue CY, et al. Synthesis and analysis of 4-(3-fluoropropyl)-glutamic acid stereoisomers to determine the stereochemical purity of (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) for clinical use. PLoS One 2020;15:e0243831
  95. Mitran B, Rinne SS, Konijnenberg MW, Maina T, Nock BA, Altai M, et al. Trastuzumab cotreatment improves survival of mice with PC-3 prostate cancer xenografts treated with the GRPR antagonist (177) Lu-DOTAGA-PEG2 -RM26. Int J Cancer 2019;145:3347-3358 https://doi.org/10.1002/ijc.32401
  96. Fox JJ, Gavane SC, Blanc-Autran E, Nehmeh S, Gonen M, Beattie B, et al. Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncol 2018;4:217-224 https://doi.org/10.1001/jamaoncol.2017.3588
  97. Cheng S, Lang L, Wang Z, Jacobson O, Yung B, Zhu G, et al. Positron emission tomography imaging of prostate cancer with Ga-68-labeled gastrin-releasing peptide receptor agonist BBN7-14 and antagonist RM26. Bioconjug Chem 2018;29:410-419 https://doi.org/10.1021/acs.bioconjchem.7b00726
  98. Mitran B, Varasteh Z, Abouzayed A, Rinne SS, Puuvuori E, De Rosa M, et al. Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancer. Cancers (Basel) 2019;11:1371
  99. Abouzayed A, Tano H, Nagy A, Rinne SS, Wadeea F, Kumar S, et al. Preclinical evaluation of the GRPR-targeting antagonist RM26 conjugated to the albumin-binding domain for GRPR-targeting therapy of cancer. Pharmaceutics 2020;12:977
  100. Dalm SU, Bakker IL, de Blois E, Doeswijk GN, Konijnenberg MW, Orlandi F, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med 2017;58:293-299 https://doi.org/10.2967/jnumed.116.176636