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INTRODUCTION

Prostate cancer (PCa) arises from prostate epithelial 
cells and is the most common malignancy of the male 
genitourinary system (7.1% of all cancers) and the second 
leading cause of cancer-related deaths in men [1]. Current 
treatment options for early-stage PCa include prostatectomy 
or local radiotherapy, which are generally effective. 
Nevertheless, approximately 35% of PCa patients develop 
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biochemical recurrence, for which the diagnostic criterion 
is elevated prostate-specific antigen (PSA) levels. Moreover, 
a significant proportion of these patients also exhibit 
distant metastases [2]. Prostate-specific membrane antigen 
(PSMA) shows significantly higher expression in primary and 
metastatic lesions than in normal tissues and has become an 
important molecular target in PCa. 

Androgen receptor (AR)-targeted therapy is required when 
PCa progresses or recurs. However, although such treatment 
can temporarily control tumor progression (usually for 2–3 
years), it inevitably promotes the adaptation of tumor cells 
to low-androgen conditions, resulting in highly aggressive 
(and lethal) metastatic castration-resistant prostate cancer 
(mCRPC) [3]. AR pathway inhibition, which is widely used 
clinically, leads to the neuroendocrine differentiation of 
PCa cells, promoting the more general castration-resistant 
prostate cancer (CRPC) subtype, namely, neuroendocrine 
prostate cancer (NEPC) [4]. NEPC is unresponsive to AR-
targeted therapy and is characterized by decreased PSMA 
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[68Ga]PSMA PET can accurately detect PCa recurrent lesions 
biochemically [9,23]. [68Ga]PSMA PET can also be used 
for accurate TNM staging, which helps guide appropriate 
treatment strategies for patients [24-26].

Common PSMA ligands coupled to gallium-68 include 
PSMA-11, PSMA-617, and PSMA-I&T. These are all small-
molecule inhibitors. For small molecule inhibitors, the 
strong zinc-binding motif of the enzyme’s active site and 
the glutaric acid portion of the P1’ position bound to the 
S1’ pocket are critical [27,28]. In PSMA-11, the lipophilicity 
between the radionuclide and the PSMA-active group 
(glutamate-urea-lysine) is enhanced via the conjugated 
HBED-CC group. This has now become the preferred chelate 
for gallium-68 PSMA tracers [27,29,30]. [68Ga]Ga-PSMA-11 
significantly accumulates in the spleen and salivary glands 
and is equally eliminated via the renal and hepatobiliary 
routes. When [68Ga]Ga-PSMA-11 PET is used for the 
detection of PCa lesions, the positive predictive value was 
consistently greater than 0.8 and 0.75 for pelvic nodal 
metastasis [31,32]. [68Ga]Ga-PSMA-11 positron emission 
tomography-computed tomography (PET-CT) detected 
PCa recurrence in 86% of patients who did not meet the 
definition of biochemical recurrence [33,34]. 

PSMA-617 is another PSMA ligand that connects 
radionuclides via conjugated DOTA chelates. DOTA-
conjugated PSMA-617 was labeled with 68Ga for PET imaging 
and 177Lu/225Ac for nuclide therapy. However, because [68Ga] 
Ga-PSMA-617 is rapidly excreted (mainly through the 
kidneys), it can interfere with the diagnosis of primary and 
periurethral PCa lesions. Therefore, this tracer is primarily 
used to evaluate metastatic PCa. PSMA-I&T is similar to 
PSMA-617, and can be coupled to multiple radionuclides. 
However, it uses the chelating compound DATAGA, as opposed 
to DOTA, for PSMA-617. [68Ga]Ga-PSMA-I&T has a low 
background uptake in the liver and spleen. Therefore, [68Ga]
Ga-PSMA-I&T shows greater sensitivity for the detection of 
primary and metastatic periurethral PCa lesions compared 
with [68Ga]Ga-PSMA-617, especially for high-grade PCa (GS 
8 or above, PSA > 10 ng/mL). However, the kidneys have a 
much higher uptake of PSMA-I&T than PSMA-617, which is 
unfavorable for treatment [35-37]. 

PSMA-TO-1 (tumor-optimized-1) and iPSMA-BN (iPSMA-
Lys3-bombesin) are relatively rare gallium-labeled PSMA 
ligands. PSMA-TO-1 was developed to have a prolonged 
circulation time using an extended linker with additional 
naphthyl groups to increase protein binding in the blood 
and promote lipophilicity. Therefore, it has a higher uptake 

expression [5]. 
Radionuclide-targeted molecular probes can facilitate the 

precise positioning and treatment of lesions and effectively 
prolong progression-free and overall survival [6-8]. Therefore, 
radiopharmaceuticals play an important role in the detection 
and treatment of primary and metastatic PCa lesions, 
particularly those in the mCRPC and NEPC stages. Currently, 
there are various radionuclide molecular probes targeting 
PCa. In this review, we divided these molecular probes 
into two main categories: PSMA and non-PSMA. Non-PSMA 
molecular probes are further classified into those targeting 
NEPC and others. It is hoped that this review involving 
dozens of radiopharmaceuticals (Tables 1, 2) will help to 
improve the overall understanding of available radionuclide 
molecular probes for PCa. 

PSMA

PSMA is a 100kDa type II transmembrane protein [9-11], 
with glutamate carboxypeptidase and folate hydrolase activity 
[12,13]. PSMA expression is increased 100- to 1000-fold in 
PCa cells compared to that in normal cells and is correlated 
with PCa grade based on the Gleason score (GS), which 
is an independent predictor of PCa progression [14-16]. 
Monoclonal antibodies and small-molecule inhibitors have 
been found to effectively bind to the extracellular portion of 
PSMA, where most small-molecule compounds, such as PSMA-
617, PSMA-I&T (I&T: imaging and treatment), MIP-1404, and 
MIP-1405, are rapidly excreted by cells, which reduces the 
radiation exposure. PSMA acts as an important site for the 
coupling of radionuclides, allowing for the detection and 
treatment of PCa lesions. The following is a summary of the 
radiopharmaceuticals that target PSMA in the diagnosis and 
treatment of PCa.

68Ga-PSMA
Gallium-68 is a short half-life positron radionuclide (half-

life:68 min) used for positron emission tomography (PET) 
imaging [17]. In general, 68Ga-labeled PSMA PET performs 
significantly better than conventional imaging examinations 
because of its exceptionally high sensitivity and specificity 
for primary and metastatic PCa lesions [18]. [68Ga]PSMA 
PET has been reported to detect 35.4% more PCa lesions 
than MRI [19,20]. Additionally, compared to 18F-choline and 
11C-choline, [68Ga]PSMA PET increases the detection of local 
recurrence and metastases to the lymph nodes and bone by 
14% [21,22]. Furthermore, when PSA levels are very low, 
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in the primary and metastatic lesions than PSMA-617 and 
PSMA-I&T. Liver metastases show higher tracer uptake 
of [68Ga]Ga-PSMA-TO-1 than of [68Ga]Ga-PSMA-11 (mean 
standard uptake value [SUVmean]: 6.0 vs. 4.0). After 120 min, 
the SUVmean of [68Ga]Ga-PSMA-TO-1 in metastases increased 
to 8.0 (up to 33%) [38]. Furthermore, there have been few 
comparative studies of PSMA-TO-1 and other gallium-labeled 
PSMA tracers. iPSMA-BN includes a heterodimer with the 
sequence HO-Glu-CO-Lys-OH and was recently designed to 
target PSMA and gastrin-releasing peptide receptor (GRPR), 

which are overexpressed in different stages of PCa. iPSMA-
BN can be labeled with 68Ga and 177Lu, making it possible 
to integrate diagnosis and treatment. [68Ga]Ga-iPSMA-BN 
showed faster blood clearance than [68Ga]Ga-PSMA-11 (half-
life in the blood = 2.64 min vs. 6.5 min). [68Ga]Ga-iPSMA-
BN clearly visualized the pancreas and is eliminated mainly 
via the kidneys, with low hepatobiliary clearance and low 
salivary gland uptake. 

Table 2. Clinical Significance of Radionuclides in Patients with Prostate Cancer

Radiopharmaceuticals          Clinical Significance
[68Ga]Ga-PSMA-11
[68Ga]Ga-PSMA-617
[68Ga]Ga-PSMA-I&T
[68Ga]Ga-iPSMA-BN

They can detect more than 80% of clinically unpredictable biochemical relapses, which could be benefit 
for early diagnosis, staging and curative effect of prostatic adenocarcinoma and guide clinicians to 
formulate personalized treatment plans. Among them, [68Ga]Ga-PSMA-I&T can detect high-grade prostatic 
adenocarcinoma (GS 8 or above, PSA > 10 ng/mL) sensitively and [68Ga]Ga-iPSMA-BN accumulates the least 
in the body.

[68Ga]Ga-PSMA-TO-1 It can improve the accuracy of early diagnosis, staging and curative effect of prostatic adenocarcinoma under 
the delayed imaging.

[68Ga]NeoBOMB1 It stays in the tumor longer than other organs, so it can detect the prostatic adenocarcinoma and NEPC more 
accurately.

[68Ga]Ga-DOTA-NT-20.3
[68Ga]RM26

They can make early diagnosis and curative effect of NEPC, including the PRRT treatment.

[18F]F-PSMA-1007
[18F]DCFPyL
[18F]F-JK-PSMA-7

They can sensitively detect small periurethral lesions of prostatic adenocarcinoma.

Al[18F]F-PSMA-BCH
Al[18F]F-PSMA-11

In the absence of the Ge/Ga generator, they are easy to be prepared, which is beneficial to examination of more 
prostatic adenocarcinoma patient.

[99mTc]Tc-MIP-1404
[99mTc]Tc-MIP-1405

Radiation dose of patients with prostatic adenocarcinoma can be reduced in the examination with single-photon 
radionuclides. 

[89Zr]Zr-PSMA-Df It can improve the detection rate of lymph node metastasis near ureter, which is conducive to the accurate 
staging of the prostatic adenocarcinoma.

[89Zr]Zr-df-IAB2M It can perform delayed imaging and can rapid from the body quickly.
[89Zr]4A06
[18F]FDG

They can detect neuroendocrine prostate cancer to distinguish between different types of prostate cancer.

[18F]FSPG It can reflect tumor redox status and antioxidant capacity, and predict tumor chemotherapy resistance of 
prostatic adenocarcinoma.

[177Lu]Lu -PSMA-617
[177Lu]Lu-EB-PSMA-617
[177Lu]Lu -PSMA-I&T

These radionuclides are suitable for patients with prostatic adenocarcinoma who have already developed mCRPC.

[177Lu]Lu-PSMA-TO-1
[177Lu]4A06
[177Lu]NeoBOMB1

They can therapy prostatic adenocarcinoma and NEPC at all stages.

[225Ac]Ac-PSMA-617
[225Ac]Ac-PSMA-TO-1

They can therapy lesions that are insensitive to 177Lu-lableded pharmaceuticals.

[90Y]Y-DOTA-TOC It can therapy patients with NEPC at all stages.

There is almost no difference in the clinical significance of nuclides in the same cell. GS = Gleason score, PSA = prostate-specific antigen, 
NEPC = neuroendocrine prostate cancer, PRRT = peptide receptor radionuclide therapy, mCRPC = metastatic castration-resistant prostate 
cancer
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18F-PSMA
18F is produced by a cyclotron and has a higher yield 

and longer half-life than 68Ga (110 min vs. 68 min) 
[39,40]. 18F-labeled PSMA ligands have the potential for 
centralized production and distribution, thus enabling 
cost savings. PSMA-1007 is a novel PSMA ligand with 
Glu-urea-Lys targeting the PSMA enzyme pocket S1’ and 
a naphthalenyl linkage region thought to co-target the 
hydrophobic accessory pocket S1. The main difference is 
that the radiolabeled molecule in the carboxyl group of 
the DOTA chelating agent is replaced by two glutamic acids 
[27,41]. [18F]F-PSMA-1007 is excreted mainly in hepatic 
bile and minimally in urine, facilitating a high detection 
rate of lesions that are near the bladder and ureter. 
Moreover, [18F]F-PSMA-1007 offers advantages in terms 
of imaging quality and sensitivity, making it a promising 
candidate for clinical applications [42-44]. Another 18F 
labeled PSMA-specific small molecule imaging agent, 
2-(3-[45]-ureido)-pentanedioic acid ([18F]DCFPyL), has 
also been developed based on the Glu-urea-Lys motif. This 
molecule is characterized by high affinity and favorable 
pharmacokinetics in vivo [23,45,46], thus allowing the 
earlier detection of local recurrence, even at lower PSA 
levels [47]. The novel probe, JK-PSMA-7, was identified by 
screening multiple DCFPyL analogs, with the main difference 
being the addition of a methoxy group to the pyridine ring. 
[18F] F-JK-PSMA-7 is rapidly excreted via the kidneys [48,49] 

and yields high-quality images, allowing the detection of 
small PSMA-expressing foci with high sensitivity [50,51] 
(Fig. 1).

Al18F-PSMA
Al18F was developed as an 18F-labeling technique that 

allows convenient 18F-labeling and requires less time under 
mild conditions. Al[18F]F-PSMA-BCH can be prepared at 
a reasonable yield within 30 min and is mostly a stable 
complex with the macrocyclic NODA chelate and Al18F2þ. 
Al[18F]F-PSMA-BCH shows promising imaging capabilities 
for PCa with appropriate radiation exposure. Al[18F]F-PSMA-
BCH is highly hydrophilic. The uptake of Al[18F]F-PSMA-BCH is 
dependent on PSMA levels in cells and tumors. Al[18F]F-PSMA-
BCH accumulates in the kidneys and can be significantly 
blocked by ZJ-43(a PSMA inhibitor) because of the high 
hydrophilicity of Al[18F]F-PSMA-BCH and high PSMA levels 
in the kidneys. The maximum standard uptake values (SUVmax) 
for patients with high-risk PCa (GS ≥ 8) are significantly 
higher than those for patients with intermediate-risk 
PCa. This is similar to the findings of a previous study on 
[68Ga]Ga-PSMA-617 [52]. The SUVmax and SUVmean of Al[18F]
F-PSMA-BCH in PCa lesions are significantly increased after 
1 h and 2 h. Al[18F]F-PSMA-BCH is almost non-toxic and 
more economical for patients [41,52]. Al[18F]F-PSMA-11 is 
another PSMA radioligand, and its uptake in the kidneys 
is greatly reduced compared to [68Ga]Ga-PSMA-11 both at 

A F
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68Ga-PSMA-11 PET-CT 18F-PSMA-1007 PET-CT

Fig. 1. Maximum intensity projections (MIPs), axial images of positron emission tomography (PET), and axial fusion images of PET-
computed tomography (CT) using [68Ga]Ga-PSMA-11 (A, B, C) and [18F]F-PSMA-1007 (D, E, F) in a 67-year-old male with Gleason 8 and 
PSA 4.9 ng/mL. The MIP image of [68Ga]Ga-PSMA-11 (A) (arrow) shows significant uptake in the bladder and left ureter, while urinary 
excretion of [18F]F-PSMA-1007 (F) is virtually absent. Lesions in the left prostate lobe are visible on both scans (arrowheads in B, D). 
However, the second lesion in the right lobe is only visible under [18F]F-PSMA-1007 (arrow in D), and has been pathologically confirmed 
to be a malignant lesion. Reprinted with permission from Kuten et al. [39] (J Nucl Med 2020;61:527-532; https://doi.org/10.2967/
jnumed.119.234187). PSMA = prostate-specific membrane antigen

https://doi.org/10.2967/jnumed.119.234187
https://doi.org/10.2967/jnumed.119.234187
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1 h and 4 h. Meanwhile, Al[18F]F-PSMA-11 develops well in 
tumors with high PSMA expression and is influenced by its 
own molar activity. The higher the molar activity, the better 
the developmental effect. However, studies have found that 
the uptake of Al[18F]F-PSMA-11 is higher in bone and lower 
in PSMA-positive tumors than that of both [68Ga]Ga-PSMA-11 
and [18F]F-PSMA-1007 [53,54].

99mTc-PSMA
Single-photon emission computed tomography CT (SPECT-

CT) is a more cost-effective imaging method than PET-CT. 
Technetium-99m has better physical properties for gamma 
probe measurements, thus reducing the radiation exposure 
for both patients and medical personnel [55]. 99mTc-labeled 
PSMA ligands, including [99mTc]Tc-MIP-1404 and [99mTc]
Tc-MIP-1405 (both of which utilize an imidazole with a 
carboxylate substitution), have favorable pharmacokinetic 
properties. Compared to [99mTc]Tc-MIP-1405, [99mTc]Tc-
MIP-1404 has shown a greater uptake in the liver and 
spleen, owing to its higher ratio of carboxyl groups. The 
phase III clinical trials for [99mTc]Tc-MIP-1404, also known 
as Treforsta, have recently been completed [27]. Compared 
to [68Ga]PSMA, delayed SPECT-CT imaging using [99mTc]
PSMA can ensure the choice of subsequent treatment 
strategies [56,57]. Furthermore, scintigraphy with [99mTc]
MDP is limited by factors, such as low PSA levels, long 
PSA doubling times, and osteolytic lesions. Thus, many 
examination results may be equivocal. In this regard, 
[99mTc]PSMA is superior to MDP and more sensitive for the 
detection of visceral metastases [58,59].

89Zr-PSMA
Ligand internalization is a vital prerequisite for tracer 

accumulation in PCa lesions. Experimental data suggest that 
the internalization of PSMA ligands gradually increases over 
24 h. Currently, the commonly used PSMA tracers have a 
short radioactive half-life, necessitating PET imaging within 
3 h of injection. To overcome this limitation, a new ligand, 
89Zr-labeled PSMA tracer ([89Zr]Zr-PSMA-Df) was explored. 
The long half-life of 89Zr (77 h) and the prolonged ligand 
internalization period allow image acquisition several days 
after the tracer injection. Compared to [68Ga]Ga-PSMA-11 
and [18F]F-JK-PSMA-7, [89Zr]Zr-PSMA-Df shows a higher 
tumor-to-background ratio and increases the detection rate 
of metastatic lymph nodes near the ureter. Additionally, 
[89Zr]Zr-PSMA-Df can detect [68Ga]Ga-PSMA-11 or [18F]F-JK-
PSMA-7 intake-free lesions, thus improving the detection 

rate (57%) of biochemically recurrent lesions [60].
Most PSMA ligands described above are small-molecule 

inhibitors of PSMA. An 85-Kd vesicle, IAB2M, has also been 
developed. This molecule is a de-immunizing monoclonal 
antibody that binds to the extracellular region of PSMA. 
The performance of [89Zr]Zr-df-IAB2M PET in detecting 
intra- and extra-prostatic lesions supports its use in clinical 
patient management for radical prostatectomy, pelvic 
lymphadenectomy, radiotherapy, and systemic therapy [61].

177Lu-PSMA
Radioligand therapy (RLT) targeting PSMA effectively 

controls PCa progression at the mCRPC stage [62,63]. 177Lu 
is a commonly used β radionuclide, and [177Lu]Lu-PSMA-617 
and [177Lu]Lu-PSMA-I&T have been used to treat mCRPC 
[64]. In one study, PSA levels decreased by 65% following 
[177Lu]PSMA treatment, compared with a 37% PSA reduction 
after traditional treatment [65]. Although ligand studies 
for 177Lu labeling are ongoing, PSMA ligands with a DOTA-
BnSCN structure show higher uptake and internalization, 
whereas better tumor uptake and retention have been 
demonstrated for bromophenyl-modified ligands and PSMA 
ligands with linear linkers [66,67]. RLT can cause xerostomia 
due to the high intake of [177Lu]PSMA by the salivary glands. 
Furthermore, the rapid excretion of [177Lu]PSMA from the body 
results in 177Lu-contaminated waste. To solve this problem, 
researchers proposed the introduction of Evans Blue dye into 
serum albumin to extend the circulation half-life of [177Lu]
Lu-PSMA-617 in vivo to obtain [177Lu]Lu-EB-PSMA-617, which 
reached the maximum therapeutic effect at the lowest dose. 

However, more than half of the patients with mCRPC 
treated with PSMA RLT ultimately failed treatment. The 
reasons for disease progression or lesion recurrence 
may include insufficient radiation dose delivery or 
radioresistance. One potential strategy for increasing tumor 
radiation doses is to extend the PSMA ligand circulation 
time. Tumor uptake was higher with PSMA-TO-1 than 
with PSMA-617 at all measured time points after 1h. The 
absorption of [177Lu]Lu-PSMA-TO-1 was 26 times greater 
than that of [177Lu]Lu-PSMA-617, suggesting long-term 
nephrotoxicity. Because PSMA-TO-1 is a long-circulating 
peptide, higher bone marrow doses are expected. While this 
higher dose could pose a greater risk of hematotoxicity 
and greater bone marrow exposure, dose delivery may be 
effective for treating bone marrow involvement [38].
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225Ac-PSMA
225Ac is an α radionuclide with a longer physical half-

life and higher linear energy than α nuclides, and can 
cause DNA double-strand breaks and cell death. [225Ac]
PSMA is potentially highly effective against tumors. For 
example, lesions that do not respond to the [177Lu]PSMA 
treatment can be eradicated by using [225Ac]PSMA (Fig. 2). 
Additionally, [225Ac]PSMA treatment can benefit patients 
with mCRPC who has developed diffuse red bone marrow 
infiltration and fail to respond to other therapies [68,69]. 
Although, xerostomia is one of the adverse effects of [225Ac]
PSMA treatment , the treatment is generally tolerated by 
the patients, and the incidence of xerostomia is reduced 
by applying ice [70,71]. Similar to 177Lu, 225Ac can be 
conjugated to PSMA ligands (PSMA-617, PSMA-I, PSMA-T, 
and PSMA-TO-1) and used for the treatment of mCRPC. The 
survival benefit conferred to mice treated with [225Ac]Ac-
PSMA-TO-1 was statistically significant compared with that 
observed in mice treated with [225Ac]Ac-PSMA-617 [38].

Many other nuclides are under development, such as [18F]
F-PSMA-7Q [72], [111In]In-PSMA-617 [73], [68Ga]Ga-P16-
093 [74], 68Ga-NGUL [75], and dual-targeted nuclides, such 
as [64Cu]Cu-FP-L1, which target both PSMA and fibroblast 
activator protein inhibitors (FAPI) [76].

NEPC Radionuclide Imaging and Therapy

PSMA-labeled radionuclides still play an important 
role in PCa. PCa cells express both adenocarcinoma and 
neuroendocrine differentiation markers. In contrast, this 
is not the case for NEPC, which expresses neuroendocrine 
differentiation only. Moreover, NEPC usually appears in 
the later stages of CRPC treatment and is characterized by 
small-cell morphology, downregulation of AR expression, 
and upregulation of neuroendocrine markers. In contrast 
to PCa adenocarcinoma, treatment-induced NEPC has 
aggressive tumor features, including large tumor size 
and a predisposition to bone and visceral metastases. 
Furthermore, treatment-induced NEPC has an inferior 
prognosis and is unresponsive to androgen deprivation 
therapy. The most common causes of NEPC development 
are the loss of the tumor suppressors RB1 and TP53 and the 
activation of oncogenic drivers, combined with significant 
epigenetic changes that further promote tumor proliferation 
and neuroendocrine lineage pathways [77]. In most NEPC 
cases, hormone depletion, p53 deletion, and lineage 
plasticity inhibit the PSMA gene, FOLH1. However, other 
molecular probes for NEPC differ from PSMA in prostate 
adenocarcinoma.

SSTR-2-Targeted Radionuclide Imaging and Therapy 
There are five somatostatin receptor (SSTR) subtypes 

Fig. 2. [68Ga]Ga-PSMA-11 positron emission tomography-computed tomography (PET-CT) scans of a patient with prostate cancer before 
and after radionuclide therapy. A: [68Ga]Ga-PSMA-11 PET-CT imaging before radionuclide therapy. B: Progression is observed after 2 cycles 
of treatment with beta-emitting [177Lu]Lu-PSMA-617. Promising treatment results after two (C) and three (D) cycles of treatment with 
α-emitting [225Ac]Ac-PSMA-617. Reprinted with permission from Kratochwil et al. [68] (J Nucl Med 2016;57:1941-1944; https://doi.
org/10.2967/jnumed.116.178673).

A B C D
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(SSTRs 1–5). Of these, SSTR2 is expressed specifically in 
neuroendocrine tumors (NETs). SSTR is a powerful target for 
NET-targeted therapy. NEPC cells show elevated expression 
of SSTR-2 and downregulation of PMSA [77-79]. Many 
studies have found that NEPC lesions show high radioactive 
uptake in SSTR-targeted PET [80] but no radioactive uptake 
in PSMA-targeted PET [81]. High-affinity ligands for SSTR, 
including TOC, NOC, and TATE, can be used to target NETs. 
68Ga-labeled DOTA-TOC and DOTA-TATE have been widely 
used for the PET imaging of tumors. Additionally, peptide 
receptor radionuclide therapy (PRRT) with [90Y]Y-DOTA-TOC 
and [177Lu]Lu-DOTA-TATE can improve treatment efficacy for 
NETs [4,45].

CDCP1-Targeted Radionuclide Imaging and Therapy 
Overexpression of the single-pass transmembrane 

protein, CUB domain-containing protein 1 (CDCP1), is 
significantly associated with phosphatase and tensin 
homolog deleted on chromosome ten (PTEN) gene loss and 
a more aggressive PCa phenotype. CDCP1 expression was 
detected in 90% of mCRPC biopsies. To quantify the number 
of CDCP1 receptors per cell, researchers have used 4A06, a 
monoclonal recombinant human antibody that recognizes 
the ectodomain of full-length or cleaved CDCP1. The tumor-
autonomous expression of CDCP1 in mCRPC can be detected 
using [89Zr]4A06 PET. Moreover, [177Lu]4A06 RLT inhibits and 
eliminates mCRPC lesions [82]. Therefore, combining CDCP1-
targeted RLT with standard treatment for mCRPC could be a 
potentially more efficacious clinical treatment strategy.

NT-20.3-Targeted Radionuclide Imaging 
High expression levels of neurohypotensin receptor 

subtype 1 (NTR1) are associated with neuroendocrine 
differentiation in PCa, which makes NTR1 a potential target 
for NEPC imaging. Recent studies have reported positive 
NTR1 expression in 91.8% of PCa tissues, including all PSMA-
negative tissues. [68Ga]Ga-DOTA-NT-20.3, can be used as 
a targeted radionuclide for the detection of NEPC because 
of its high affinity for NTR1 and favorable distribution and 
kinetics in the body [83]. In PC3 xenografts expressing 
NTR1, high-contrast [68Ga]Ga-DOTA-NT-20.3 images indicate 
the potential to detect low or neuroendocrine differentiation 
in PCa. Furthermore, NT-20.3 exhibits high stability 
and retention within tumors, which is conducive to its 
application in PRRT for mCRPC at later stages.

[18F]FDG-PET Imaging
Some high-grade aggressive NETs frequently lose SSTR 

expression. FDG is a glucose analog that shows a high 
level of uptake by cells with high glycolysis rates. [18F]
FDG-PET is widely used to detect tumors. The degree of 
[18F]FDG uptake reflects the level of glucose metabolism 
in viable tumor cells, with highly aggressive malignancies 
showing higher levels of [18F]FDG uptake [45,84]. Studies 
have demonstrated that NEPC cells show increased glucose 
uptake owing to the increased expression of glucose 
transporters. More glucose is brought into the tumor cells 
and is phosphorylated by hexokinase [81]. Importantly, 
glucokinase levels are 5-fold higher in PSMA-negative 
tumors than in AR-positive tumors, leading to increased 
uptake and deposition of [18F]FDG within NEPC cells [81,85]. 
Research has found that eecurrent NEPC lesions show an 
increased [18F]FDG uptake and a decreased PSMA expression. 
These lesions are characterized by high metabolic activity, 
rapid progression, and poor prognosis [86,87]. Although 
[18F]-FDG-PET is inefficient in detecting PCa lesions, it can 
be beneficial in detecting NEPC lesions [88] (Fig. 3).

Other Molecular Probes for PCa

Fibroblast Activator Protein Inhibitors
Fibroblast activator protein (FAP) is a 97 kDa type II 

transmembrane serine protease that is expressed at low or 
undetectable levels in normal tissues but at high levels in a 
variety of cancers, including 90% epithelial tumors [89,90]. 
Recently, quinoline-based FAPIs have been developed as 
promising imaging probes for various solid tumors, including 
PCa. FAP-targeted radionuclide imaging and treatment 
can overcome tumor heterogeneity and the limitations 
associated with insufficient PSMA expression. However, 
their application may be limited to highly differentiated PCa 
[86]. Additionally, FAPI-targeted RLT has shown therapeutic 
potential in PSMA-negative mCRPC [91].

FSPG
L-glutamate is an unnatural amino acid that is 

upregulated in many cancers and can reflect tumor redox 
status and antioxidant capacity, and predict resistance to 
chemotherapy [92,93]. The glutamate derivative, (S)-4-(3-
18F-fluoropropyl)-L-glutamate (FSPG), is rapidly excreted 
through the kidneys and has low background activity, 
providing high contrast for tumor imaging [93]. [18F]-labeled 
FSPG ([18F]FSPG) has been used in clinical imaging of 
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Fig. 3. Maximum intensity projection (MIP) of positron emission tomography (PET) and trans-axial fusion images of PET-computed 
tomography (CT) scans of a 53-year-old male with post-operative relapse of his prostate cancer. Al[18F]F-PSMA PET-CT shows no uptake 
in the recurrent lesions (A, D). [18F]FDG PET-CT shows multiple lesions with high uptake throughout the body (B, E). After six cycles of 
chemotherapy, [18F]FDG PET-CT demonstrates that multiple lesions are significantly reduced in size and radioactive uptake (C, F).

hepatocellular carcinoma, non-small cell lung cancer, PCa, 
and intracranial malignancies [94]. 

Gastrin-Releasing Peptide Receptor Antagonists
Although some NEPCs express little PSMA, they express 

GRPR. RM26 is a peptide skeleton-modified lactopin analog 
that serves as a high-affinity antagonist of GRPR, a member 
of the G protein-coupled receptor family of urotin receptors. 
Endogenous receptor expression is observed in the pancreas, 
whereas only low expression levels are detected in both 
normal and proliferative prostate tissues [7,95]. Studies have 
confirmed that [68Ga]RM26-PET showed high specific uptake 
in tumors and a high tumor-to-background ratio [96,97]. 
[68Ga]RM26-PET is of significant value for detecting primary 
and metastatic PCa lesions because GRPR expression is high 
in early-stage PCa. However, GRPR expression decreases as 
PCa progresses [98]. NOTA-DUPA-RM26 heterodimers that bind 
to both GRPR and PSMA are produced in PCa. These [68Ga]- 
and [111In]-labeled NOTA-DUPA-RM26 dimers can be used 
for simultaneous PSMA- and GRPR-targeted PET and SPECT 
imaging to improve the diagnostic accuracy of PCa [98,99].

NeoBOMB1 is a novel DOTA-coupled GRPR antagonist 
with a high affinity for GRPR and excellent in vivo 
stability. NeoBOMB1 can be labeled as [68Ga] and [177Lu]. 
Biodistribution studies with [68Ga]NeoBOMB1 have shown 
high tumor uptake, leading to a clear visualization of the 
tumor on PET-CT scans. These data suggest that [177Lu]
NeoBOMB1 has strong specificity. It is also proven as a 
treatment for the currently known types of PCa, and has n a 
good tumor-kidney ratio [100].

SUMMARY

Radionuclide-labeled PSMA ligands are currently the most 
commonly used nuclide drugs in clinical practice. These 
drugs have replaced traditional imaging methods, allowing 
accurate TNM staging of PCa and providing a basis for the 
selection of a suitable treatment plan. Tracers excreted 
via the hepatobiliary route can highlight the bladder and 
periurethral lesions more clearly. Furthermore, promising 
progress has been made in the treatment of advanced mCRPC 
using [177Lu]/[225Ac]-PSMA.
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However, PSMA is not a perfect marker. There can be 
some physiological uptake of ligands and approximately 
10% of primary PCa cases lack PSMA expression, which can 
arise from lesions with insufficient PSMA expression or from 
lesions developing into NEPC because of therapeutic AR 
resistance. Some NEPC targets have recently been used for 
NEPC imaging and treatment. Additionally, dual-targeting of 
PSMA and FAP by heterodimers has shown that combining 
different markers improved the specificity, sensitivity, and 
accuracy of PCa imaging and treatment. PRRT and RLT have 
opened new avenues for the treatment of NEPC. Furthermore, 
numerous radiopharmaceuticals and targeted molecular 
probes have continuously improved the detection rate of PCa 
lesions, and are being used for mCRPC, which will continue 
to be the focus of future research.
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