• Title/Summary/Keyword: InAs quantum dots

Search Result 276, Processing Time 0.079 seconds

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.

Enhancement in solar cell efficiency by luminescent down-shifting layers

  • Ahmed, Hind A.;Walshe, James;Kennedy, Manus;Confrey, Thomas;Doran, John;McCormack, Sarah.J.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.117-126
    • /
    • 2013
  • In this paper, core-shell semiconductor quantum dots (QDs) CdSeS/ZnS with emission at 490 nm and 450 nm were investigated for their use in luminescent down-shifting (LDS) layers. Luminescent quantum yield (LQY) of the QDs measurements in solution proposed that they were suitable candidates for inclusion in LDS layers. QDs were encapsulated in poly(methyl,methacrylate) (PMMA) polymer matrix and films were fabricated of $134{\pm}0.05$ microns. Selections of organic dyes from BASF Lumogen F range were also investigated for their use as LDS layers; Violet 570 and Yellow 083. The addition of LDS layers containing Violet 570 dye demonstrated a unity LQY when encapsulated within a PMMA matrix. A PV device of an LDS layer of Lumogen Violet 570 deposited on top of a crystalline silicon cell was fabricated where it was demonstrated to increase the efficiency of the cell by 34.5% relative.

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor (마이크로리액터를 이용한 전구체 유속에 따른 CdSe/ZnS 양자점의 광학특성)

  • Park, Ji Young;Jeong, Da-Woon;Ju, Won;Seo, Han Wook;Cho, Yong-Ho;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.

Investigation of Carrier Transport Mechanism in Schottky Type InAs/GaAs Quantum Dot Solar Cells

  • Kim, Ho-Seong;Ryu, Geun-Hwan;Yang, Hyeon-Deok;Park, Min-Su;Kim, Sang-Hyeok;Song, Jin-Dong;Choe, Won-Jun;Park, Jeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.319.1-319.1
    • /
    • 2014
  • We present the results on the indium tin oxide (ITO) Schottky barrier solar cells (SBSCs) with InAs quantum dots (QDs). The dependence of external quantum efficiency on the external bias voltage has been studied to anlayze carrier extraction through tunneling at room temperature.

  • PDF

Magnetic properties of micro-patterned array of anti-dots in Co/Ni bilayer

  • Deshpande, N.G.;Seo, M.S.;Zheng, H.Y.;Lee, S.J.;Rhee, J.Y.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.276-276
    • /
    • 2010
  • Large-area micropatterned array of Co/Ni bilayer anti-dots was fabricated using photolithography and wet etching process. The surface morphology as well as the surface topography was checked by scanning electron microscopy and atomic force microscopy, whereas the magnetic properties were studied by magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM). Systematic studies of the magnetic-reversal mechanism, the in-plane anisotropy and the switching field properties were carried out. To get a comprehensive knowledge about the domain configuration, we also employed OOMMF simulations. It was found from the MOKE measurements that a combined effect of configurational and the magneto-crystalline anisotropy simultaneously works in such micropatterned bilayer structures. In addition, the inclusion of holes in the uniform magnetic film drastically affected the switching field. The MFM images show well-defined domain structures which are periodic in nature. The micromagnetic simulations indicate that the magnetization reversal of such a structure proceeds by formation and annihilation of domain walls, which were equally manifested by the field-dependent MFM images. The observed changes in the magnetic properties are strongly related to both the patterning that hinders the domain-wall motion and to the magneto-anisotropic bilayered structure.

  • PDF

Enhanced Photosensitivity in Monolayer MoS2 with PbS Quantum Dots

  • Cho, Sangeun;Jo, Yongcheol;Woo, Hyeonseok;Kim, Jongmin;Kwak, Jungwon;Kim, Hyungsang;Im, Hyunsik
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.47-49
    • /
    • 2017
  • Photocurrent enhancement has been investigated in monolayer (1L) $MoS_2$ with PbS quantum dots (QDs). A metal-semiconductor-metal (Au-1L $MoS_2$-Au) junction device is fabricated using a standard photolithography method. Considerably improved photo-electrical properties are obtained by coating PbS QDs on the Au-1L $MoS_2$-Au device. Time dependent photoconductivity and current-voltage characteristics are investigated. For the QDs-coated $MoS_2$ device, it is observed that the photocurrent is considerably enhanced and the decay life time becomes longer. We propose that carriers in QDs are excited and transferred to the $MoS_2$ channel under light illumination, improving the photocurrent of the 1L $MoS_2$ channel. Our experimental findings suggest that two-dimensional layered semiconductor materials combined with QDs could be used as building blocks for highly-sensitive optoelectronic detectors including radiation sensors.

Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis (반응 용기법을 이용한 InP/ZnS 양자점 합성과정에서 InP 코어의 성장기구)

  • Seo, Han wook;Jeong, Da-woon;Lee, Bin;Hyun, Seoung kyun;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.6-10
    • /
    • 2017
  • This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.