DOI QR코드

DOI QR Code

Enhanced Photosensitivity in Monolayer MoS2 with PbS Quantum Dots

  • Cho, Sangeun (Division of Physics & Semiconductor Science, Dongguk University) ;
  • Jo, Yongcheol (Division of Physics & Semiconductor Science, Dongguk University) ;
  • Woo, Hyeonseok (Division of Physics & Semiconductor Science, Dongguk University) ;
  • Kim, Jongmin (Division of Physics & Semiconductor Science, Dongguk University) ;
  • Kwak, Jungwon (Medical Physics Department, Asan Medical Center) ;
  • Kim, Hyungsang (Division of Physics & Semiconductor Science, Dongguk University) ;
  • Im, Hyunsik (Division of Physics & Semiconductor Science, Dongguk University)
  • Received : 2017.03.28
  • Accepted : 2017.04.27
  • Published : 2017.05.31

Abstract

Photocurrent enhancement has been investigated in monolayer (1L) $MoS_2$ with PbS quantum dots (QDs). A metal-semiconductor-metal (Au-1L $MoS_2$-Au) junction device is fabricated using a standard photolithography method. Considerably improved photo-electrical properties are obtained by coating PbS QDs on the Au-1L $MoS_2$-Au device. Time dependent photoconductivity and current-voltage characteristics are investigated. For the QDs-coated $MoS_2$ device, it is observed that the photocurrent is considerably enhanced and the decay life time becomes longer. We propose that carriers in QDs are excited and transferred to the $MoS_2$ channel under light illumination, improving the photocurrent of the 1L $MoS_2$ channel. Our experimental findings suggest that two-dimensional layered semiconductor materials combined with QDs could be used as building blocks for highly-sensitive optoelectronic detectors including radiation sensors.

Keywords

References

  1. Y. Zhang, H. Li, L. Wang, H. Wang, H. Wang, X. Xie, S. Zhang, R. Liu, and Z. Qiu, Photothermoelectric and photovoltaic effects both present in MoS2, Sci. Rep. 5, 7938 (2015). https://doi.org/10.1038/srep07938
  2. A. Chernikov, T. Berkelbach, H. Hill, A. Rigosi, Y. Li, O. Aslan, D. Reichman, M. Hybertsen, and T. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113 076802 (2014). https://doi.org/10.1103/PhysRevLett.113.076802
  3. G.D. Scholes, And G. Rumbles, Excitons in nanoscale systems, Nature Mater. 5 683 (2006). https://doi.org/10.1038/nmat1710
  4. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgengrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone, Boron nitride substrates for high quality graphene electronics, Nature Nanotech, 5 722 (2010). https://doi.org/10.1038/nnano.2010.172
  5. M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two dimensional materials, Chem. Rev. 113 3766 (2013). https://doi.org/10.1021/cr300263a
  6. B. Radisavljevic, and A. Kis, Mobility engineering and a metalinsulator transition in monolayer MoS2, Nature Mater. 12 815 (2013). https://doi.org/10.1038/nmat3687
  7. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 1271 (2010). https://doi.org/10.1021/nl903868w
  8. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nature Nanotech. 8 497 (2013). https://doi.org/10.1038/nnano.2013.100
  9. D. Kufer, I. Nikitskiy, T. Lasanta, G. Nabickaite, F. Koppens, and G. Konstantatos, Hybrid 2D-0D MoS2-PbS quantum dot photodetector, Adv. Mater, 6 5635 (2012).
  10. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, and F.H.L. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain, Nat. Nanotechnol. 7 363 (2012). https://doi.org/10.1038/nnano.2012.60