• Title/Summary/Keyword: In-vivo

Search Result 8,144, Processing Time 0.039 seconds

Comparison of In Vitro, Ex Vivo, and In Vivo Antibacterial Activity Test Methods for Hand Hygiene Products (손 위생 제품에 대한 in vitro, ex vivo, in vivo 항균 시험법 비교)

  • Daeun Lee;Hyeonju Yeo;Haeyoon Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • Numerous methods have been applied to assess the antibacterial effectiveness of hand hygiene products. However, the different results obtained through various evaluation methods have complicated our understanding of the real efficacy of the products. Few studies have compared test methods for assessing the efficacy of hand hygiene products. In particular, reports on ex vivo pig skin testing are limited. This study aimed to compare and characterize the methodologies applied for evaluating hand hygiene products, involving in vitro, ex vivo, and in vivo approaches, applicable to both leave-on sanitizers and wash-off products. Our further aim was to enhance the reliability of ex vivo test protocols by identifying influential factors. We performed an in vitro method (EN1276) and an in vivo test (EN1499 and ASTM2755) with at least 20 participants, against Serratia marcescens or Escherichia coli and Staphylococcus aureus. For the ex vivo experiment, we used pig skin squares prepared in the same way as those used in the in vivo test method and determined the optimal treated sample volumes for sanitizers and the amount of water required to wash off the product. The hand sanitizers showed at least a 5-log reduction in bacterial load in the in vitro test, while they showed little antibacterial activity in the in vivo and ex vivo tests, particularly those with a low alcohol content. For the hand wash products, the in vitro test was limited because of bubble formation or the high viscosity of the products and it showed low antibacterial activity of less than a 1-log reduction against E. coli. In contrast, significantly higher log reductions were observed in ex vivo and in vivo tests, consistently demonstrating these results across the two methods. Our findings revealed that the ex vivo and in vivo tests reflect the two different antibacterial mechanisms of leave-on and wash-off products. Our proposed optimized ex vivo test was more rapid and more precise than the in vitro test to evaluate antibacterial results.

Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering

  • Son, Taeyoon;Lee, Jonghwan;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • Various methods have been proposed for enhancing the contrast of laser speckle contrast image (LSCI) in subcutaneous blood flow measurements. However, the LSCI still suffers from low image contrast due to tissue turbidity. Herein, a physicochemical tissue optical clearing (PCTOC) method was employed to enhance the contrast of LSCI. Ex vivo and in vivo experiments were performed with porcine skin samples and male ICR mice, respectively. The ex vivo LSCIs were obtained before and 90 min after the application of the PCTOC and in vivo LSCIs were obtained for 60 min after the application of the PCTOC. In order to obtain the skin recovery images, saline was applied for 30 min after the application of the PCTOC was completed. The visible appearance of the tubing under ex vivo samples and the in vivo vasculature gradually enhanced over time. The LSCI increased as a function of time after the application of the PCTOC in both ex vivo and in vivo experiments, and properly recovered to initial conditions after the application of saline in the in vivo experiment. The LSCI combined with the PCTOC was greatly enhanced even in deep vasculature. It is expected that similar results will be obtained in in vivo human studies.

Cytocidal Effect of Hyperthermia on Tumor Cells in vivo (In vivo 腫瘍細胞에 미치는 溫熱處理의 細胞致死效果)

  • Kang, Man-Sik;Rhee, Jeong-Gile;Seymour H. Levitt;Chang W. Song
    • The Korean Journal of Zoology
    • /
    • v.24 no.2
    • /
    • pp.59-64
    • /
    • 1981
  • The cytocidal effect of hyperthermia on subcutaneous SCK tumor cells growing in vivo was significantly greater than that on the SCK tumor cells cultured in vitro. When the tumors were left in situ after heating, the cell survival progressively decreased, and the functional intratumor vascular volume also decreased. The radiation survival curves of tumor cells heated either 30 min before or after X-irradiation in vivo were steeper than the radiation survival curves of unheated control tumors. It is concluded that the cytocidal effect of hyperthermia on tumor cells in vivo is greater than that in vitro due possibly to the intratumor environment.

  • PDF

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Towards Evolutionary Approach for Thermal Aware In Vivo Sensor Networks

  • Kamal, Rossi;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.369-371
    • /
    • 2012
  • Wireless sensor networks have taken immense interest in healthcare systems in recent years. One example of it is in an in vivo sensor that is deployed in critical and sensitive healthcare applications like artificial retina, cardiac pacemaker, drug delivery, blood pressure, internal heat calculation, glucosemonitoring etc. In vivo sensor nodes exhibit temperature that may be very dangerous for human tissues. However, existing in vivo thermal aware routing approaches suffer from hotspot creation, delay, and computational complexity. These limitations motivate us toward an in vivo virtual backbone, a small subset of nodes, connected to all other nodes and involved in routing of all nodes, -based solution. A virtual backbone is lightweight and its fault-tolerant version allows in vivo sensor nodes to disconnect hotspot paths and to use alternative paths. We have formulated the problem as m-connected k-dominating set problem with minimum temperature cost in in vivo sensor network. This is a combinatorial optimization problem and we have been motivated to use evolutionary approach to solve the problem.

Fatty Acid Contents and Efficacy of In vivo and In vitro Cultured Entomopathogenic Nematodes (In vivo 및 in vitro로 배양된 곤충병원성 선충의 지방산 함량 및 효능)

  • 박선호;김효현
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.271-275
    • /
    • 2002
  • Fatty Acid contents of entomopathogenic nematodes(EPNs) were examined by various types of nematodes and culture methods. Seven different types EPNs cultured by in vivo did not contain same fatty acid contents, but similar compositions. It was also found that Steinernema carpocapsae among EPNs cultured by in vivo and in vitro contained not only different fatty acid contents, but also revealed distinctive motilities in a soil. The addition of olive oil in the in vitro culture medium resulted in similar fatty acid contents of S. carpocapsae to in vivo and greatly improved the pathogenicity of nematodes compared to that of soy oil in the medium.

Screening of Genes Expressed In Vivo During Interaction Between Chicken and Campylobacter jejuni

  • Hu, Yuanqing;Huang, Jinlin;Jiao, Xin-An
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • Chicken are considered as the most important source of human infection by Campylobacter jejuni, which primarily arises from contaminated poultry meats. However, the genes expressed in vivo of the interaction between chicken and C. jejuni have not been screened. In this regard, in vivo-induced antigen technology (IVIAT) was applied to identify expressed genes in vivo during interaction between chicken and C. jejuni, a prevalent foodborne pathogen worldwide. Chicken sera were obtained by inoculating C. jejuni NCTC 11168 into Leghorn chickens through oral and intramuscular administration. Pooled chicken sera, adsorbed against in vitro-grown cultures of C. jejuni, were used to screen the inducible expression library of genomic proteins from sequenced C. jejuni NCTC 11168. Finally, 28 unique genes expressed in vivo were successfully identified after secondary and tertiary screenings with IVIAT. The genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, regulation and other processes, in addition to Cj0092, with unknown function. Several potential virulence-associated genes were found to be expressed in vivo, including chuA, flgS, cheA, rplA, and Cj0190c. We selected four genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results indicated that these selected genes were significantly upregulated in vivo but not in vitro. In short, the expressed genes in vivo may act as potential virulence-associated genes, the protein encoded by which may be meaningful vaccine candidate antigens for campylobacteriosis. IVIAT provides an important and efficient strategy for understanding the interaction mechanisms between Campylobacter and hosts.

In vitro/In vivo Correlation of Sustained Release Diltiazem (딜티아젬서방정을 이용한 In vitro/In vivo 상관성)

  • Choi, Myoeng-Sin;Kang, Chan-Soon;Choi, Bo-Kyung;Hong, Chong-Hui;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.321-325
    • /
    • 2002
  • IVIVC (In vitro/in vivo correlation) is useful for predicting in vivo results from in vitro data. The aim of this study was to develop IVIVC of sustained release diltiazem. For this purpose, three types of diltiazem tablets with different in vitro dissolution rates were prepared. An in vitro dissolution testing method comprising of paddle apparatus, 50 rpm, water as dissolution medium was developed. Under these condition, we demonstrated that AUCinf could be predicted by evaluating $d_{70%}$ (time dissolved 70%) in vitro since the in vivo AUCinf was correlated with the in vitro $d_{70%}$ (r=-0.9981).

Development and pregnancy rates of Camelus dromedarius-cloned embryos derived from in vivo- and in vitro-matured oocytes

  • Son, Young-Bum;Jeong, Yeon Ik;Jeong, Yeon Woo;Olsson, Per Olof;Hossein, Mohammad Shamim;Cai, Lian;Kim, Sun;Choi, Eun Ji;Sakaguchi, Kenichiro;Tinson, Alex;Singh, Kuhad Kuldip;Rajesh, Singh;Noura, Al Shamsi;Hwang, Woo Suk
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.177-183
    • /
    • 2022
  • Objective: The present study evaluated the efficiency of embryo development and pregnancy of somatic cell nuclear transfer (SCNT) embryos using different source-matured oocytes in Camelus dromedarius. Methods: Camelus dromedarius embryos were produced by SCNT using in vivo- and in vitro- matured oocytes. In vitro embryo developmental capacity of reconstructed embryos was evaluated. To confirm the efficiency of pregnancy and live birth rates, a total of 72 blastocysts using in vitro- matured oocytes transferred into 45 surrogates and 95 blastocysts using in vivo- matured oocytes were transferred into 62 surrogates by transvaginal method. Results: The collected oocytes derived from ovum pick up showed higher maturation potential into metaphase II oocytes than oocytes from the slaughterhouse. The competence of cleavage, and blastocyst were also significantly higher in in vivo- matured oocytes than in vitro- matured oocytes. After embryo transfer, 11 pregnant and 10 live births were confirmed in in vivo- matured oocytes group, and 2 pregnant and 1 live birth were confirmed in in vitro- matured oocytes group. Furthermore, blastocysts produced by in vivo-matured oocytes resulted in significantly higher early pregnancy and live birth rates than in vitro-matured oocytes. Conclusion: In this study, SCNT embryos using in vivo- and in vitro-matured camel oocytes were successfully developed, and pregnancy was established in recipient camels. We also confirmed that in vivo-matured oocytes improved the development of embryos and the pregnancy capacity using the blastocyst embryo transfer method.

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon;Hong, Kee-Jong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2012
  • Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.