DOI QR코드

DOI QR Code

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon (Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Hong, Kee-Jong (Division of High-Risk Pathogen Research, Center for Infectious Diseases, Korea National Research of Health)
  • Received : 2012.10.17
  • Accepted : 2012.10.29
  • Published : 2012.12.31

Abstract

Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Blasberg, R. G. and J. Gelovani-Tjuvajev. 2002. In vivo molecular- genetic imaging. J. Cell. Biochem. Suppl. 39: 172-183.
  2. Forss-Petter, S., P. E. Danielson, S. Catsicas, E. Battenberg, J. Price, M. Nerenberg, and J. G. Sutcliffe. 1990. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5: 187-197. https://doi.org/10.1016/0896-6273(90)90308-3
  3. Yu, Y. A., T. Timiryasova, Q. Zhang, R. Beltz, and A. A. Szalay. 2003. Optical imaging: bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals. Anal. Bioanal. Chem. 377: 964-972. https://doi.org/10.1007/s00216-003-2065-0
  4. Shaner, N. C., P. A. Steinbach, and R. Y. Tsien. 2005. A guide to choosing fluorescent proteins. Nat. Methods 2: 905-909. https://doi.org/10.1038/nmeth819
  5. Tjuvajev, J. G., G. Stockhammer, R. Desai, H. Uehara, K.Watanabe, B. Gansbacher, and R. G. Blasberg. 1995. Imaging the expression of transfected genes in vivo. Cancer Res. 55: 6126-6132.
  6. Gambhir, S. S., J. R. Barrio, M. E. Phelps, M. Iyer, M. Namavari, N. Satyamurthy, L. Wu, L. A. Green, E. Bauer, D. C. MacLaren, K. Nguyen, A. J. Berk, S. R. Cherry, and H. R. Herschman. 1999. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. U.S.A. 96: 2333-2338. https://doi.org/10.1073/pnas.96.5.2333
  7. Brown, R. S., J. Y. Leung, S. J. Fisher, K. A. Frey, S. P. Ethier, and R. L. Wahl. 1996. Intratumoral distribution of tritiated- FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J. Nucl. Med. 37: 1042-1047.
  8. Ichikawa, T., D. Högemann, Y. Saeki, E. Tyminski, K. Terada, R. Weissleder, E. A. Chiocca, and J. P. Basilion. 2002. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4: 523-530. https://doi.org/10.1038/sj.neo.7900266
  9. Blasberg, R. G. and J. G. Tjuvajev. 2003. Molecular-genetic imaging: current and future perspectives. J. Clin. Invest. 111: 1620-1629. https://doi.org/10.1172/JCI18855
  10. Massoud, T. F. and S. S. Gambhir. 2003. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17: 545-580. https://doi.org/10.1101/gad.1047403
  11. Serganova, I., P. Mayer-Kukuck, R. Huang, and R. Blasberg. 2008. Molecular imaging: reporter gene imaging. Handb. Exp. Pharmaco. (185 Pt 2): 167-223.
  12. Hoffman, J. M. and S. S. Gambhir. 2007. Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244: 39-47. https://doi.org/10.1148/radiol.2441060773
  13. Townsend, D. W., J. P. Carney, J. T. Yap, and N. C. Hall. 2004. PET/CT today and tomorrow. J. Nucl. Med. 45 Suppl1: 4S-14S.
  14. Kang, J. H. and J. K. Chung. 2008. Molecular-genetic imaging based on reporter gene expression. J. Nucl. Med. 49 Suppl2: 164S-179S. https://doi.org/10.2967/jnumed.107.045955
  15. Pichler, B. J., M. S. Judenhofer, C. Catana, J. H. Walton, M. Kneilling, R. E. Nutt, S. B. Siegel, C. D Claussen, and S. R. Cherry. 2006. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J. Nucl. Med. 47: 639-647.
  16. Ottobrini, L., C. Martelli, D. L. Trabattoni, M. Clerici, and G. Lucignani. 2011. In vivo imaging of immune cell trafficking in cancer. Eur. J. Nucl. Med. Mol. Imaging 38: 949-968. https://doi.org/10.1007/s00259-010-1687-7
  17. Dunn, K. W. and T. A. Sutton. 2008. Functional studies in living animals using multiphoton microscopy. ILAR J. 49: 66-77. https://doi.org/10.1093/ilar.49.1.66
  18. Pittet, M. J. and R. Weissleder. 2011. Intravital Imaging. Cell 147: 983-991.
  19. DeJong, M. and T. Maina. 2010. Of mice and humans: are they the same?- Implications in cancer translational research. J. Nucl. Med. 51: 501-504. https://doi.org/10.2967/jnumed.109.065706
  20. Pham, W., S. Kobukai, C. Hotta, and J. C. Gore. 2009. Dendritic cells; therapy and imaging. Expert. Opin. Biol. Ther. 9: 539-564. https://doi.org/10.1517/14712590902867739
  21. Mandl, S., C. Schimmelpfennig, M. Edinger, R. S. Negrin, and C. H. Contag. 2002. Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J. Cell. Biochem. Suppl. 39: 239-248.
  22. Negrin, R. S. and H. Contag. 2006. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat. Rev. Immunol. 6: 484-490. https://doi.org/10.1038/nri1879
  23. Song, M. G., B. Kang, J. Y. Jeon, J. Chang, S. Lee, C. K. Min, H. Youn, and E. Y. Choi. 2012. In vivo imaging of differences in early donor cell proliferation in graft-versus-host disease hosts with different pre-conditioning doses. Mol. Cells 33: 79-86. https://doi.org/10.1007/s10059-012-2228-y
  24. de Vries, I. J., W. J. Lesterhuis, J. O. Barentsz, P. Verdijk, J. H. van Krieken, O. C. Boerman, W. J. Oyen, J. J. Bonenkamp, J. B. Boezeman, G. J. Adema, J. W. Bulte, T. W. Scheenen, C. J. Punt, A. Heerschap, and C. G. Figdor. 2005. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat. Biotechnol. 23: 1407-1413. https://doi.org/10.1038/nbt1154
  25. Dobrenkov, K., M. Olszewska, Y. Likar, L. Shenker, G. Gunset, S. Cai, N. Pillarsetty, H. Hricak, M. Sadelain, and V. Ponomarev. 2008. Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J. Nucl. Med. 49: 1162-1170. https://doi.org/10.2967/jnumed.107.047324
  26. Leimgruber, A., C. Berger, V. Cortez-Retamozo, M. Etzrodt, A. P. Newton, P. Waterman, J. L. Figueiredo, R. H. Kohler, N. Elpek, T. R. Mempel, F. K. Swirski, M. Nahrendorf, R. Weissleder, and M. J. Pittet. 2009. Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle. Neoplasia 11: 459-468. https://doi.org/10.1593/neo.09356

Cited by

  1. Advances in Molecular Imaging Strategies for In Vivo Tracking of Immune Cells vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/1946585
  2. In Vivo Tracking of Phagocytic Immune Cells Using a Dual Imaging Probe with Gadolinium-Enhanced MRI and Near-Infrared Fluorescence vol.8, pp.16, 2012, https://doi.org/10.1021/acsami.6b03344
  3. TRAIL-NP hybrids for cancer therapy: a review vol.9, pp.18, 2012, https://doi.org/10.1039/c7nr01469d
  4. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies vol.8, pp.None, 2012, https://doi.org/10.3389/fimmu.2017.01090
  5. Characterization of the Tumor Microenvironment and Tumor–Stroma Interaction by Non-invasive Preclinical Imaging vol.7, pp.None, 2012, https://doi.org/10.3389/fonc.2017.00003
  6. Current Perspective on In Vivo Molecular Imaging of Immune Cells vol.22, pp.6, 2012, https://doi.org/10.3390/molecules22060881
  7. SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures vol.13, pp.9, 2018, https://doi.org/10.1371/journal.pone.0204354
  8. Optical Imaging of Glucose Uptake and Mitochondrial Membrane Potential to Characterize Her2 Breast Tumor Metabolic Phenotypes vol.17, pp.7, 2012, https://doi.org/10.1158/1541-7786.mcr-18-0618
  9. Non-invasive molecular imaging of immune cell dynamics for vaccine research vol.8, pp.2, 2012, https://doi.org/10.7774/cevr.2019.8.2.89
  10. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors vol.11, pp.None, 2021, https://doi.org/10.3389/fimmu.2020.604967
  11. Multimodal Imaging-Based Potential Visualization of the Tumor Microenvironment in Bone Metastasis vol.10, pp.11, 2012, https://doi.org/10.3390/cells10112877
  12. Non-invasive synchronous monitoring of neutrophil migration using whole body near-infrared fluorescence-based imaging vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-81097-8