• Title/Summary/Keyword: In-plane flow

검색결과 942건 처리시간 0.035초

조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구 (Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow)

  • 홍성철
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(2) - ISM와 PIV 측정의 비교 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(2) - Comparison of ISM and PIV Measurement)

  • 박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.139-147
    • /
    • 2015
  • This paper is the second investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous work, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation might cause serious problems. In this study, intake valve angle is selected as a main parameter for the assessment because the main flow direction to cylinder governed by this angle has the strongest influence on the in-cylinder flow pattern. For this purpose, four heads, which have the different angle, are prepared and the flow characteristics are estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75 times bore position apart from the cylinder head, which is widely used plane in the steady flow measurement. The results show that both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75 plane, however, the effects of two factors act in the opposite direction. In addition, the profile's influence is much greater than that of the eccentricity.

UBET를 이용한 리브-웨브형 링 단조에 관한 연구 (A study on rib-web shaped ring forging using UBET)

  • Kim, Y.H.;Bae, W.B.;Nam, K.H.
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.134-142
    • /
    • 1994
  • An upper bound elemental technique (UBET) is applied to predict variations of neutral plane and optimal position of the initial billet for rib-wep shaped ring forging. In the analysis, the neutral plane position and velocity fields are determined by minimizing the total power consump- tion with respect to chosen parameters. The degree of die-cavity filling by initial billet-position and the variations of neutral plane by friction condition are investigated. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향 (Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론 (Nonsteady Plane-strain ideal forming with elastic dead zone)

  • 이원오;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2004
  • Ever since the ideal forming theory has been developed fur process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, for a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

  • PDF

Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone

  • Chung, Kwansoo;Lee, Wonoh;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제3권3호
    • /
    • pp.120-127
    • /
    • 2002
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform fellowing the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

3차원 유동해석을 통한 토크 컨버터의 성능분석 (Performance Analysis of a Torque Converter with Three Dimensional Flow Simulation)

  • 신세현;안희학;이태경
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.15-23
    • /
    • 1998
  • A three dimensional simulation of the fluid flow in an automotive torque converter was conducted adopting the mixing plane model implemented in the computational fluid dynamics program CFD-ACE. The present numerical results for performance characteristics showed a good agreement with the experimental results. In the flow of the torque converter, recirculating flow regimes were found mostly at the suction side of each element, which caused the performance decrease. The recirculating flow can be minimized by the optimization of the blade geometries.

  • PDF

잠제 제원 및 평면배치에 따른 쇄파특성 (Wave Breaking Characteristics due to Shape and Plane Arrangement of the Submerged Breakwaters)

  • 이우동;허동수;허정원
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.116-122
    • /
    • 2010
  • The aim of this study is to examine the effects of shape and plane arrangement of submerged breakwaters on 3-D wave breaking characteristics over them. First, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D), has been validated by a comparison with Goda's equation for breaking wave heights. And then, using the numerical results, the wave breaking points over the crest of submerged breakwaters have been examined in relation to the shape and plane arrangement of submerged breakwaters. Moreover, the wave height distribution and upper flow around submerged breakwaters have been also discussed, as well as the distribution of the wave breaking points over the beach.

PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 - (The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet -)

  • 김동건;윤순현
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.

셸 구조물의 중고주파 진동 파워흐름해석 (Power Flow Analysis for Medium-to-High Frequency Vibration of Shell Structures)

  • 박도현;김일환;홍석윤;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1177-1184
    • /
    • 2002
  • In this paper, power flow analysis method on the various types of thin shell has been developed to solve vibrational Problems in the medium to high frequency ranges. Energy governing equations have been derived both for out-of plane and in-plane waves in thin shell. These results have been numerically applied to predict the vibrational energy density and intensity distributions of cylindrical, spherical and doubly-curved shells.

  • PDF