Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone

  • Chung, Kwansoo (School of Materials Science and Engineering, Seoul National University) ;
  • Lee, Wonoh (School of Materials Science and Engineering, Seoul National University) ;
  • Kang, Tae Jin (School of Materials Science and Engineering, Seoul National University) ;
  • Youn, Jae Ryoun (School of Materials Science and Engineering, Seoul National University)
  • Published : 2002.09.01

Abstract

Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform fellowing the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

Keywords

References

  1. O. Richmond and M. L. Devenpeck, Proc. 4th U.S. Natn. Cong. Appl Mech., 1053 (1962)
  2. O. Richmond and H. L. Morrison, J. Mech. Phys. Solids, 15, 195 (1967) https://doi.org/10.1016/0022-5096(67)90032-4
  3. O. Richmond, Mechanics of Solid State, Univ. of Toronto Press, 154 (1968)
  4. R. Hill,J. Mech. Phys. Solids, 15, 223 (1967) https://doi.org/10.1016/0022-5096(67)90034-8
  5. H. A. Wienecke and O. Richmond, J. Appl. Mech. (accepted)
  6. K. Chung and O. Richmond, J. Appl. Mech., 61, 176(1994) https://doi.org/10.1115/1.2901394
  7. K. Chung and O. Richmond, Int. J. Plasticity, 9, 907(1993) https://doi.org/10.1016/0749-6419(93)90057-W
  8. K. Chung and O. Richmond, Int. J. Mech. Sci., 34, 617(1992) https://doi.org/10.1016/0020-7403(92)90059-P
  9. F. Barlat, K. Chung, and O. Richmond, Metllurgical and Materials Trans., 25A, 1209 (1994) https://doi.org/10.1007/BF02652295
  10. K. Chung, F. Barlat, J. C. Brem, D. J. Lege, and O. Richmond,Int. J. Mech. Sci., 39, 105 (1997) https://doi.org/10.1016/0020-7403(96)00007-0
  11. O. Richmond and K. Chung, Int. J. Mech. Sci., 42, 2455(2000) https://doi.org/10.1016/S0020-7403(99)00006-5
  12. K. Chung, J. W. Yoon, and O. Richmond, Int. J. Plasticity, 16, 595 (2000) https://doi.org/10.1016/S0749-6419(99)00068-6
  13. A. Nadai, 'Theory of Flow and Fracture of Solids', Vol. 2, pp.96, McGraw-Hill, New York, 1963
  14. R. Hill, J. Mech. Phys. Solids, 34, 511 (1986) https://doi.org/10.1016/0022-5096(86)90015-3
  15. K. Chung and O. Richmond, Int. J. Mech. Sci., 34, 575(1992) https://doi.org/10.1016/0020-7403(92)90032-C
  16. O. Richmond and S. Alexandrov, J. Mech. Phys. Solids, 48, 1735 (2000) https://doi.org/10.1016/S0022-5096(99)00065-4
  17. K. Chung, W. Lee, and W.R. Yu, J.Korean Fiber Soc., 39, 407 (2002)
  18. K. Chung, W. Lee, and O. Richmond, Int. J. Plasticity, (submitted)
  19. S. Alexandrov, Private communication, (2001)