• Title/Summary/Keyword: In vivo imaging

Search Result 390, Processing Time 0.024 seconds

Synthesis of dimeric fluorescent TSPO ligand for detection of glioma

  • Tien Tan Bui;Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • TSPO, an 18-kDa translocator protein, is a peripheral-type benzodiazepine receptor that has been associated to a variety of biological activities such as apoptosis, steroidogenesis, and cell proliferation. Because TSPO overexpression has been found in various forms of cancer, it has recently become one of the most appealing biological targets for cancer therapies and detection. In order to create new optical imaging agents for improved diagnostics, we synthesized a novel dimeric fluorescent TSPO ligand based on PRB28 structure and SCy5.5. Following the preparation of the novel TSPO ligand, in vivo and ex vivo imaging tests were performed to examine the tumor uptake characteristics of the fluorescent TSPO ligand in a glioma animal model, and it was found that novel TSPO ligand was accumulated in glioma. These results suggested that novel dimeric fluorescent TSPO ligand will be applied to detect glioma.

In vivo Imaging Flow Cytometer (세포 이미징 기능을 겸비한 생체 유세포 분석기)

  • Lee, Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.9-11
    • /
    • 2007
  • We introduce an in vivo imaging flow cytometer, which provides fluorescence images simultaneously with quantitative information on the cell population of interest in a live animal. As fluorescent cells pass through the slit of light focused across a blood vessel, the excited fluorescence is confocally detected. This cell signal triggers a strobe beam and a high sensitivity CCD camera that captures a snap-shot image of the cell as it moves down-stream from the slit. We demonstrate that the majority of signal peaks detected in the in vivo flow cytometer arise from individual cells. The instrument's capability to image circulating T cells and measure their speed in the blood vessel in real time in vivo is demonstrated. The cell signal irradiance variation, clustering percentage, and potential applications in biology and medicine are discussed.

Development of High Resolution Micro-CT System for In Vivo Small Animal Imaging (소형 동물의 생체 촬영을 위한 고해상도 Micro-CT 시스템의 개발)

  • Park, Jeong-Jin;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2007
  • Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of $10{\mu}m$. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of $100{\mu}m$ due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.

Non-Invasive in vivo Loss Tangent Imaging: Thermal Sensitivity Estimation at the Larmor Frequency

  • Choi, Narae;Kim, Min-Oh;Shin, Jaewook;Lee, Joonsung;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Visualization of the tissue loss tangent property can provide distinct contrast and offer new information related to tissue electrical properties. A method for non-invasive imaging of the electrical loss tangent of tissue using magnetic resonance imaging (MRI) was demonstrated, and the effect of loss tangent was observed through simulations assuming a hyperthermia procedure. For measurement of tissue loss tangent, radiofrequency field maps ($B_1{^+}$ complex map) were acquired using a double-angle actual flip angle imaging MRI sequence. The conductivity and permittivity were estimated from the complex valued $B_1{^+}$ map using Helmholtz equations. Phantom and ex-vivo experiments were then performed. Electromagnetic simulations of hyperthermia were carried out for observation of temperature elevation with respect to loss tangent. Non-invasive imaging of tissue loss tangent via complex valued $B_1{^+}$ mapping using MRI was successfully conducted. Simulation results indicated that loss tangent is a dominant factor in temperature elevation in the high frequency range during hyperthermia. Knowledge of the tissue loss tangent value can be a useful marker for thermotherapy applications.

In vivo visualization of liquid-feeding phenomena of a butterfly (나비 펌프의 구조와 동적 거동의 in vivo 가시화)

  • Lee, Seung-Chul;Kim, Bo-Heum;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.69-73
    • /
    • 2011
  • Butterflies have been known to suck viscous liquids through a long, cylindrical proboscis using the large pressure difference formulated by the cyclic expansion and contraction of a muscular pump located inside their head. However, there are few studies on the liquid-feeding phenomena in a live butterfly, because it is hard to observe the internal morphological structures under in vivo condition. In this study, the dynamic motion of the pump system in a butterfly was in vivo visualized using synchrotron X-ray micro-imaging technique to analyze the liquid-feeding mechanism. The period of the liquid-feeding process is about 0.3sec. The expansion stage is about two times larger than the contraction stage in one cycle. The cyclic variation of pump volume generate large negative suction pressure and the pressure difference inside the long proboscis of a butterfly is estimated to be larger than 1atm.

Fluorescence Molecular Imaging

  • Choi, Heung-Kook;Ntziachristos, Vasilis;Weissleder, Ralph
    • Proceedings of the KSMRM Conference
    • /
    • 2004.09a
    • /
    • pp.23-32
    • /
    • 2004
  • The chemotherapy sensitive Lewis lung carcinoma (LLC) and chemotherapy resistant Lewis lung carcinoma (CR-LLC) tumors concurrently implanted in mice, and compare these findings with histological macroscopic observations against 3D reconstruction of Fluorescence Molecular Tomography (FMT) preformed in vivo on the same animals. For the 3D image reconstruction we used 32 laser source images, a flat image and 3D surface rendering that confused for 3D Fluorescence Molecular Imaging (FMI). A minimum of ten tissue sections were analyzed per tumor for quantification of the TUNEL-positive cells, cell-associated Cy5.5-Annexin and vessel-associated Alexa Fluor-Lectin. These are useful apoptosis and angiogenesis markers, and they serve as validation experiments to data obtained in vivousing a Cy5.5-Annexin V conjugate injected intravenously in chemotherapy-treated animals carrying the tumors studied histologically. We detected higher levels of apoptosis and corresponding higher levels of Cy5.5 fluorescence in the LLC vs. the CR-LLC tumors according to tissue depth and these findings confirm that in vivo staining with the Cy5.5-Annexing conjugate correlates well with in vitro TUNEL staining and is consistent with the higher apoptotic index expected from the LLC line. There appeared to be 1.38% more apoptosis for LLC than CR-LLC. Consequently there is good correlation between the histology results and in vivo fluorescence-mediated optical imaging. In conclusion the apoptotic images of 3D FMI were validated by microscopic histological image analysis. This is a significant result for the continuous progress of fluorescence 3D imaging research.

  • PDF

Radiofrequency Coil Design for in vivo Sodium Magnetic Resonance Imaging of Mouse Kidney at 9.4T

  • Lim, Song-I;Woo, Chul-Woong;Kim, Sang-Tae;Choe, Bo-Young;Woo, Dong-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2018
  • The objective of this study was to describe a radiofrequency (RF) coil design for in vivo sodium magnetic resonance imaging (MRI) for use in small animals. Accumulating evidence has indicated the importance and potential of sodium imaging with improved magnet strength (> 7T), faster gradient, better hardware, multi-nucleus imaging methods, and optimal coil design for patient and animal studies. Thus, we developed a saddle-shaped sodium volume coil with a diameter/length of 30/30 mm. To evaluate the efficiency of this coil, bench-level measurement was performed. Unloaded Q value, loaded Q value, and ratio of these two values were estimated to be 352.8, 211.18, and 1.67, respectively. Thereafter, in vivo acquisition of sodium images was performed using normal mice (12 weeks old; n = 5) with a two-dimensional gradient echo sequence and minimized echo time to increase spatial resolution of images. Sodium signal-to-noise ratio in mouse kidneys (renal cortex, medulla, and pelvis) was measured. We successfully acquired sodium MR images of the mouse kidney with high spatial resolution (approximately 0.625 mm) through a combination of sodium-proton coils.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Cho, Sungkoo;Jo, Kwanghyun;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1016-1023
    • /
    • 2022
  • In proton therapy, a highly conformal proton dose can be delivered to the tumor by means of the steep distal dose penumbra at the end of the beam range. The proton beam range, however, is highly sensitive to range uncertainty, which makes accurately locating the proton range in the patient difficult. In-vivo range verification is a method to manage range uncertainty, one of the promising techniques being prompt gamma imaging (PGI). In earlier studies, we proposed gamma electron vertex imaging (GEVI), and constructed a proof-of-principle system. The system successfully demonstrated the GEVI imaging principle for therapeutic proton pencil beams without scanning, but showed some limitations under clinical conditions, particularly for pencil beam scanning proton therapy. In the present study, we upgraded the GEVI system in several aspects and tested the performance improvements such as for range-shift verification in the context of line scanning proton treatment. Specifically, the system showed better performance in obtaining accurate prompt gamma (PG) distributions in the clinical environment. Furthermore, high shift-detection sensitivity and accuracy were shown under various range-shift conditions using line scanning proton beams.

Molecular Imaging Using Sodium Iodide Symporter (NIS) (Sodium Iodide Symporter (NIS)를 이용한 분자영상)

  • Cho, Je-Yoel
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer or prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic agent when combined with radioiodide injection. Better NIS-mediated imaging and tumor treatment by radioiodide requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.