Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.001

Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy  

Kim, Sung Hun (Center for Proton Therapy, National Cancer Center)
Jeong, Jong Hwi (Center for Proton Therapy, National Cancer Center)
Ku, Youngmo (Department of Nuclear Engineering, Hanyang University)
Jung, Jaerin (Department of Nuclear Engineering, Hanyang University)
Cho, Sungkoo (Radiation Oncology, Samsung Medical Center)
Jo, Kwanghyun (Radiation Oncology, Samsung Medical Center)
Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 1016-1023 More about this Journal
Abstract
In proton therapy, a highly conformal proton dose can be delivered to the tumor by means of the steep distal dose penumbra at the end of the beam range. The proton beam range, however, is highly sensitive to range uncertainty, which makes accurately locating the proton range in the patient difficult. In-vivo range verification is a method to manage range uncertainty, one of the promising techniques being prompt gamma imaging (PGI). In earlier studies, we proposed gamma electron vertex imaging (GEVI), and constructed a proof-of-principle system. The system successfully demonstrated the GEVI imaging principle for therapeutic proton pencil beams without scanning, but showed some limitations under clinical conditions, particularly for pencil beam scanning proton therapy. In the present study, we upgraded the GEVI system in several aspects and tested the performance improvements such as for range-shift verification in the context of line scanning proton treatment. Specifically, the system showed better performance in obtaining accurate prompt gamma (PG) distributions in the clinical environment. Furthermore, high shift-detection sensitivity and accuracy were shown under various range-shift conditions using line scanning proton beams.
Keywords
Prompt gamma imaging; Gamma electron vertex imaging; In-vivo range verification; Pencil beam scanning proton therapy; Proton therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.H. Kim, H.R. Lee, S.H. Kim, J.H. Park, S. Cho, W.G. Jung, Gamma electron vertex imaging for in-vivo beam-range measurement in proton therapy: experimental results, Appl, Phys. Lett. 113 (11) (2018) 114101, https://doi.org/10.1063/1.5039448.   DOI
2 J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitrosi, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tome, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in GEANT4, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 835 (1) (2016) 186-225, https://doi.org/10.1016/j.nima.2016.06.125.   DOI
3 J. Krimmer, D. Dauvergne, J.M. Letang, Testa, Prompt-gamma monitoring in hadrontherapy: a review, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 878 (2018) 58-73, https://doi.org/10.1016/j.nima.2017.07.063.   DOI
4 H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (2012) R99, https://doi.org/10.1088/0031-9155/57/11/R99.   DOI
5 I. Perali, A. Celani, P. Busca, C. Fiorini, A. Marone, M. Basilavecchia, T. Frizzi, F. Roellinghoff, J. Smeets, D. Prieels, F. Stichelbaut, F. Vander Stappen, S. Henrotin, A. Benilov, Prompt gamma imaging with a slit camera for realtime range control in proton therapy: experimental validation up to 230 MeV with HICAM and development of a new prototype, in: IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 2012, pp. 3883-3886, https://doi.org/10.1109/NSSMIC.2012.6551890. NSS/MIC.   DOI
6 J. Smeets, F. Roellinghoff, D. Prieels, F. Stichelbaut, A. Benilov, P. Busca, C. Fiorini, R. Peloso, M. Basilavecchia, T. Frizzi, J.C. Dehaes, A. Dubus, Prompt gamma imaging with a slit camera for real-time range control in proton therapy, Phys. Med. Biol. 57 (11) (2012) 3371-3405, https://doi.org/10.1088/0031-9155/57/11/3371.   DOI
7 Y. Xie, E.H. Bentefour, G. Janssens, J. Smeets, F. Vander Stappen, L. Hotoiu, L. Yin, D. Dolney, S. Avery, F. O'Grady, D. Prieels, J. McDonough, T.D. Solberg, R.A. Lustig, A. Lin, B.K.K. Teo, Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy, Int. J. Radiat. Oncol. Biol. Phys. 99 (1) (2017) 210-218, https://doi.org/10.1016/j.ijrobp.2017.04.027.   DOI
8 C.H. Min, H.R. Lee, C.H. Kim, Two-dimensional prompt gamma measurement simulation for in vivo dose verification in proton therapy: a Monte Carlo study, Nucl. Technol. 175 (1) (2011) 11-15, https://doi.org/10.13182/NT11-A12262.   DOI
9 G. Pausch, J. Berthold, W. Enghardt, K. Romer, A. Straessner, A. Wagner, T. Werner, T. Kogler, Detection systems for range monitoring in proton therapy: needs and challenges, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 954 (2020) 161227, https://doi.org/10.1016/j.nima.2018.09.062.   DOI
10 A.C. Knopf, A. Lomax, In vivo proton range verification: a review, Phys. Med. Biol. 58 (15) (2013) R131, https://doi.org/10.1088/0031-9155/58/15/R131.   DOI
11 C.H. Min, H.R. Lee, C.H. Kim, S.B. Lee, Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy, Med. Phys. 39 (4) (2012) 2100-2107, https://doi.org/10.1118/1.3694098.   DOI
12 H.R. Lee, S.H. Kim, J.H. Park, W.G. Jung, H. Lim, C.H. Kim, Prototype system for proton beam range measurement based on gamma electron vertex imaging, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 857 (2017) 82-97, https://doi.org/10.1016/j.nima.2017.03.022.   DOI
13 S.W. Peterson, D. Robertson, J. Polf, Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy, Phys. Med. Biol. 55 (22) (2010) 6841-6856, https://doi.org/10.1088/0031-9155/55/22/015.   DOI
14 C.H. Kim, J.H. Park, H. Seo, H.R. Lee, Gamma electron vertex imaging and application to beam range verification in proton therapy, Med. Phys. 39 (2) (2012) 1001-1005, https://doi.org/10.1118/1.3662890.   DOI
15 Nakhostin Mohammad, Signal Processing for Radiation Detectors, 2017. John Wiley & Sons.
16 J. Krimmer, M. Chevallier, J. Constanzo, D. Dauvergne, M. De Rydt, G. Dedes, N. Freud, P. Henriquet, C. La Tessa, J.M. Letang, R. Pleskac, M. Pinto, C. Ray, V. Reithinger, M.H. Richard, I. Rinaldi, F. Roellinghoff, C. Schuy, E. Testa, M. Testa, Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations, J. Instrum. 10 (2015) P01011, https://doi.org/10.1088/1748-0221/10/01/P01011, 01.   DOI
17 C.H. Min, C.H. Kim, M.Y. Youn, J.W. Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Appl. Phys. Lett. 89 (18) (2006) 183517, https://doi.org/10.1063/1.2378561.   DOI