• Title/Summary/Keyword: In mold packaging process

Search Result 30, Processing Time 0.021 seconds

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.

Cost-effective Machine Learning Method for Predicting Package Warpage during Mold Curing (몰드 경화 공정 중 패키지 휨 예측을 위한 비용 절감형 머신러닝 방법)

  • Seong-Hwan Park;Tae-Hyun Kim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.24-37
    • /
    • 2024
  • Due to the thin nature of semiconductor packages, even minor thermal loads can cause significant warpage, impacting product reliability through issues like delamination or cracking. The mold curing process, which encloses the package to protect the semiconductor chip, is particularly challenging to predict due to the complex thermal, chemical, and mechanical interactions. This study proposes a cost-effective machine learning model to predict warpage in the mold curing process. We developed methods to characterize the curing degree based on time and temperature and quantify the material's mechanical properties accordingly. A Finite Element Method (FEM) simulation model was created by integrating these properties into ABAQUS UMAT to predict warpage for various design factors. Additionally, a Warpage formula was developed to estimate local warpage based on the package's stacking structure. This formula combines bending theory with thermo-chemical-mechanical properties and was validated through FEM simulation results. The study presents a method to construct a machine learning model for warpage prediction using this formula and proposes a cost-effective approach for building a training dataset by analyzing input variables and design factors. This methodology achieves over 98% prediction accuracy and reduces simulation time by 96.5%.

Microbial Risk Assessment and HACCP Plan for the Safe Production of Dry Aged Meat (안전한 건식 숙성육 제조를 위한 미생물 위해평가 및 HACCP 적용 방안)

  • Oh, Hyemin;Lee, Hyun Jung;Jo, Cheorun;Yoon, Yohan
    • Journal of the FoodService Safety
    • /
    • v.3 no.1
    • /
    • pp.8-18
    • /
    • 2022
  • Dry-aging is one of the traditional aging processes, especially for beef. This aging process is being popular, because it produces unique brown/roasted flavor and texture that consumers prefer. However, as it is exposed to outside without packaging food safety concerns have been raised. The objective of this study was to investigate the presence of total aerobic bacteria (TAB) and pathogenic bacteria in manufacturing environment and suggest the safety management plan for the production of dry-aged meat. Surface samples from 66 environmental and 6 beef carcass samples were collected. According to the monitoring results, the contamination levels of TAB were in the order of shelves (5.4±1.1 Log CFU/cm2), cotton gloves (2.9±0.2 Log CFU/cm2), and door knobs (2.8±0.4 Log CFU/cm2) in the dry-aging room. In the door knobs, the level of mold was higher than that of yeast. These results indicate that the mold spores may be cross-contaminated with environmental factors inside the aging room. The risk factors that may occur during the manufacturing process were presented and possibility of risk was determined. From the aspect of microbiology, aging and trimming steps were determined as the critical control points. The temperature of the aging room should be maintained below 10℃ and the humidity below 75-85%. Based on the monitoring and the risk assessment of the dry-aging process, we prepared the safety management plan for the production of dry-aged meat, and it should be useful in improving the food safety of dry-aged meat.

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.

Analysis on Hazard Microorganisms in Raw Materials and Processing Environment for Sunsik Manufacture (선식용 곡류원료 및 제조공정에 따른 유해미생물 오염도 분석)

  • Kim, Jin-Hee;Lee, Yu-Keun;Yang, Ji-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.410-416
    • /
    • 2011
  • Cereals are the main raw material for sunsik manufacture. As the fundamental processing step, it is very important to confirm the level of the microorganism contamination in the cereals. This study was carried out a micrbiological screening of cereal samples for sunsik from 19 companies located in South Korea. Ten kinds of cereals which were glutinous rice, barley, brownrice, blackbean, blackrice, blacksesame, sorghum, millet, perilla seed, and adlay were investigated. As the results, the contaminations of general bacterial were 3.1~8.6 log(CFU/g). The results of Escherichia coli were 1.0~3.4 log(CFU/g). There was no contamination of Salmonella. spp in any cereal samples except black sesame and mold was detected in barley. The experiment for microbiological contamination during sunsik processing was also investigated in this study. The results of general bacteria were detected as 5.1~8.5, 4.4~7.5, 1.0~2.3, 2.4~4.2, 1.0~4.0, 3.4~4.2, 4.3~5.2, and 3.3~5.5 log(CFU/g) during environment of warehousing, washing, steaming, 1st cooling, drying, 2nd cooling, grinding, and packaging process, respectively. The results of coliform were 1.0~2.0 log(CFU/g) during warehousing respectively. Mold was found in warehousing. In case of the instruments, the contaminations of general bacterial were 4.2~7.5, 0.1~2.0, 0.1~3.2, 3.7~4.0, 2.5~3.0, and 3.8~5.2 log(CFU/g) in cereals tanks, washing machines, grinding machines, packaging machines, and workrooms. The results of coliform were 2.4~4.0, 0.0~4.1 log(CFU/g) in cereals tanks and grinding machines, respectively. Mold were only found in cereals tanks, grinding machines, and workings. Therefore, the risk of hazard microorganisms contmination might be decrased as the exhaustive management is applied to the whole sunsik process.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Preparation of n-type Bi-Te-Se-based Thermoelectric Materials with Improved Reliability via hot Extrusion Process (열간압출을 이용한 고신뢰성 n형 Bi-Te-Se계 열전소자 제조)

  • Hwang, Jeong Yun;Kim, Yong-Nam;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Herein we developed the hot extrusion technology to prepare n-type Bi-Te-Se-based thermoelectric materials with high reliability. Starting ingot was fabricated via melt-solidification process, then pulverized it into powders (${\sim}30{\mu}m$) by using high energy ball milling. By optimization of mold design and temperature-pressure conditions for hot extrusion, dense extrudate of 1.8 mm in diameter with high 00l orientation could be obtained from disc-shape compacted powders (20 mm in diameter). High power factor ${\sim}4.1mW/mK^2$ and enhanced mechanical strength ~50 MPa were simultaneously observed at 300 K.

Effect of Overlaid White Charcoal Board on the Ethylene Gas Adsorption and Preservation Life of Strawberry (오버레이 백탄보드의 에칠렌가스 흡착과 딸기 보관성 효과)

  • Lee, Hwa-Hyoung;Cho, Youn-Mean;Park, Han-Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.86-92
    • /
    • 2004
  • This research was carried out to examine the ethylene gas adsorption and preservation life of white charcoal boards for packaging. Two types of white charcoal board were made of #40-60 charcoal particles and mixed charcoal particles with PVA and MDI resin by wet process. For not only beauty effect but also avoiding stain from touching, white charcoal boards were overlaid with two kinds of overlay material, thin printed paper and non woven fabric. A charcoal board adsorbed ethylene gas much more than the paper and even white charcoal itself. There was no difference between two board types, between overlay treatments, and between overlay materials. Gray mold growth of strawberry arised after 2 days in a paper box and after 4 days in a white charcoal board. Preservation life of white charcoal board box was approximately twice more than that. of a paper box. There was no difference in the ability of keeping freshness between two board types, between overlay treatments, and between overlay materials.

Heat & Cool Injection Molded Fresnel Lens Solar Concentrators (가열-냉각 사출성형 방식을 적용한 집광형 프레넬렌즈)

  • Jeong, Byeong-Ho;Min, Wan-Ki;Lee, Kang-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.283-289
    • /
    • 2014
  • A Fresnel lens is an optical component which can be used as a cost-effective, lightweight alternative to conventional continuous surface optics. Fresnel lens solar concentrators continue to fulfill a market requirement as a system component in high volume cost effective Concentrating Photovoltaic (CPV) electricity generation. The basic principles of the fresnel lens are reviewed and some practical examples are described. To investigate the performance space of the Fresnel lens, a fast simulation method which is a hybrid between raytracing and analytical computation is employed to generate a cache of simulation data. Injection molders are warming up to the idea of cycling their tool surface temperature during the molding cycle rather than keeping it constant. Heat and cool process are now also finding that raising the mold wall temperature above the resin's glass-transition or crystalline melting temperature during the filling stage and product performance in applications from automotive to packaging to optics. This paper deals with the suitability of Fresnel lenses of imaging and non-imaging designs for solar energy concentration. The concentration fresnel lens confirmed machinability and optical transmittance and roughness measure through manufactured the prototype.