• Title/Summary/Keyword: Impulse response model

Search Result 307, Processing Time 0.028 seconds

An Extended Finite Impulse Response Filter for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 확장 유한 임펄스 응답 필터)

  • Han, Sekyung;Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a finite impulse response (FIR) filter is proposed for discrete-time nonlinear systems. The proposed filter is designed by combining the estimate of the perturbation state and nominal state. The perturbation state is estimated by adapting the optimal time-varying FIR filter for the linearized perturbation model and the nominal state is directly obtained from the nonlinear nominal trajectory model. Since the FIR structured estimators use the finite horizon information on the most recent time interval, the proposed extended FIR filter satisfies the bounded input/bounded output (BIBO) stability, which can't be obtained from infinite impulse response (IIR) estimators. Thus, it can be expected that the proposed extended FIR filter is more robust than IIR structured estimators such as an extended Kalman filter for the round-of errors and the uncertainties from unknown initial states and uncertain system model parameters. The simulation results show that the proposed filter has better performance than the extended Kalman filter (EKF) in both robustness and fast convergency.

Estimation unknown parameter of 2nd order circuits using LabVIEW (LabVIEW를 이용한 2차 회로의 미지 파라미터 추정)

  • 윤정주;이민철;이승희;고석조;이영진;안철기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1131-1134
    • /
    • 2003
  • Unknown parameters of a nonlinear system were estimated using a signal compression method. The estimated parameters were natural frequency and tile damping coefficient. This study applied a algorithm using tile comparison of the cross-correlation coefficient between the impulse response from a model and it from the signal compression method. The impulse through linear element included in a nonlinear system could be obtained by the signal compression method. The unknown parameters of the linear element could be estimated by comparing the Bode plots of system's impulse response with them of model's response. In this study, a LSCM(LabVIEW-Signal-Compression-Method) was developed to identify a nonlinear system. The LSCM consisted of National Instrument's (NI) Data Acquisition (DAQ) Board (Model PCI-1200), a monitoring program using LabVIEW software package, DAQ Signal Accessory Board, and 2nd-order electric circuits. The designed electric circuits consisted of resistors, inductors and capacitors. To evaluate the performance of the LSCM, the response from model with known parameters is compared with the response from the real system using the monitoring program. The results from simulation of experiment showed that the developed LSCM provided a reliable estimation performance.

  • PDF

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

Ultra Wideband Channel Model for Indoor Environments

  • Alvarez, Alvaro;Valera, Gustavo;Manuel Lobeira;Torres, Rafael-Pedro;Garcia, Jose-Luis
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.309-318
    • /
    • 2003
  • This paper presents an in-depth study of a UWB indoor radio channel between 1 and 9 GHz, which was used for the subsequent development of a new statistical UWB multipath channel model, focusing on short range indoor scenarios. The channel sounding process was carried out covering different indoor environments, such as laboratories, halls or corridors. A combination of new and traditional parameters has been used to accurately model the channel impulse response in order to perform a precise temporal estimation of the received pulse shape. This model is designed specifically for UWB digital systems, where the received pulse is correlated with an estimated replica of itself. The precision of the model has been verified through the comparison with measured data from equivalent scenarios and cases, and highly satisfactory results were obtained.

Cumulative Impulse Response Functions for a Class of Threshold-Asymmetric GARCH Processes

  • Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.255-261
    • /
    • 2010
  • A class of threshold-asymmetric GRACH(TGARCH, hereafter) models has been useful for explaining asymmetric volatilities in the field of financial time series. The cumulative impulse response function of a conditionally heteroscedastic time series often measures a degree of unstability in volatilities. In this article, a general form of the cumulative impulse response function of the TGARCH model is discussed. In particular, We present formula in their closed forms for the first two lower order models, viz., TGARCH(1, 1) and TGARCH(2, 2).

In-situ Determination of Absorption Coefficients in a Room

  • Suh, Jin-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3E
    • /
    • pp.10-17
    • /
    • 2001
  • The possibility is investigated of determining the diffuse absorption coefficients of the wall surfaces in a real room by minimizing the errors between the measured energy impulse response of a real room and the predicted energy impulse responses obtained from the ray tracing simulation of the room. In other words, this can possibly serve as a basis for "acoustical system identification" in attempting to determine the "best fit" of modelled absorption coefficients to measured energy response data. Algorithms for attempting this were investigated. The algorithms developed for this purpose proved to be rigorous and efficient. Instead of using the ray tracing model to determine the absorption coefficients, the phase image model was used in order to determine the acoustic impedances of wall surfaces. However, the numerical algorithms could not find the correct impedance values, primarily due to the wide range of the acoustic impedance values of any single acoustic material and very long computation time.

  • PDF

Evaluations of Three Phase Shift Models in Describing Phase Shift Impulse Train Response of a Simple Planar Oscillator (간단한 2차원 오실레이터의 임펄스열 응답에 관한 3가지 위상편이 모델의 평가)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.861-866
    • /
    • 2014
  • This study evaluates the modeling accuracy of the existing three phase shift models on which the time domain oscillator phase noise theories are based. For the evaluation, this study investigates how accurately the three models can model the phase shift impulse train response of a simple planar oscillator. Evaluation result reveals that Kaertner model most accurately reflects the oscillator's phase shift impulse train responses for five different impulse train inputs, whereas PP model exhibited the worst performance in modeling the phase shift impulse train responses.

The Improvement of Multi-dof Impulse Response Spectrum by Using Optimization Technique (최적화 기법을 이용한 다자유도 충격응답스펙트럼의 오차 개선)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.792-798
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function (FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기)

  • Kwon, Bo-Kyu;Han, Sekyung;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs

  • Wang, Wei;Zhang, Duo;Lu, Fangyun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.363-381
    • /
    • 2012
  • This study is aimed at providing an efficient analytical model to obtain pressure- impulse diagram of one-way reinforced concrete slabs subjected to different shapes of air blast loading using single degree of freedom method (SDOF). A tri-linear elastic perfectly plastic SDOF model has been used to obtain the pressure-impulse diagram to correlate the blast pressure and the corresponding concrete flexural damage. In order to capture the response history for the slab, a new approximately SDOF method based on the conventional SDOF method is proposed and validated using published test data. The influences of pulse loading shape on the pressure-impulse diagram are studied. Based on the results, a pressure-impulse diagram generation method using SDOF and an analytical equation for the pressure-impulse diagram is proposed to different damage levels and different blast loading shapes.