
THE JOURNAL Oe THE ACOUSTICAL SOCIETY OF KOREA Vol.20, N6.3E 2001. 9. pp. 10-17

In-situ Determination of Absorption Coefficients 
in a Room

Jin Sung Suh*

* Department of Mechanical Engineering, Korea Polytechnic University 

(Received 26 February 2001； accepted 9 July 2001)

Abstract
The possibility is investigated of determining the diffiise absorption coefficients of the wall surfaces in a real room 

by minimizing the errors between the measured energy impulse response of a real room and the predicted energy impulse 

responses obtained from the ray tracing simulation of the room. In other words, this can possibly serve as a basis for 

uacoustical system identificationf，in attempting to determine the "best fit" of modelled absorption coefficients to measured 

energy response data. Algorithms for attempting this were investigated. The algorithms developed for this purpose proved 

to be rigoroxis and efficient. Instead of using the ray tracing model to determine the absorption coefficients, the phase 

image model was used in order to determine the acoustic impedances of wall surfaces. However, the numerical algorithms 

could not find the correct impedance values, primarily due to the wide range of the acoustic impedance values of any 

single acoustic material and very long computation time.
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I. Introduction

The feasibility is examined of determining the diffuse 

absorption coefficients of the wall surfaces in a room from 

the comparison between the mealed energy response 

function of a real room and the predicted energy response 

functions obtained from the ray tracing model [1-3]. For 

this to be feasible, two conditions have to be satisfied. 

Firstly, the ray tracing model should be able to represent 

the actual physical phenomenon of sound propagation in 

a room environment. Secondly, the numerical methods 

employed must be able to find the optimum set of the 

absorption coefficients of the wall surfaces which minimizes 
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the error between the measured and simulated energy 

impulse responses.

This work discusses only the numerical aspects of the 

work. It is shown that a combination of two numerical 

methods, i.e. the wdownhill simplex method" [4,5] and the 

H simulated annealing method" [6,7], could find the correct 

set of the absorption coefficients which minimizes the 

error globally. The in-situ determination of the absorption 

coefficients of wall surfaces in a real room requires that 

the ray tracing model should be improved further since 

it cannot represent all the physical aspects of sound 

propagation in a real room environment.

An attempt was made to use the phase image model 

[8-11] to identify the acoustic impedances of wall surfeces. 

At the present stage, however, this attempt was not 

successful since problems like the heavy computational 
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burden and very long computation time could not be 

resolved.

II. Fnding Absorption Coefficients by Nu

merical Techniques

It is first assumed that the result of one ray tracing 

simulation, when given a particular set of absorption coeffic

ients, is an actual measurement of the energy impulse 

response function of a room. It needs to be established that 

this set of absorption coefficients can be found numerica

lly by minimizing the errors between this assumed measurement 

and the results of the ray tracing simulation obtained from 

many sets of absoprtion coefficients. When given a large 

number of the sets of absorption coefficients, each set will 

produce a different energy impulse response. Among the 

many sets of absorption coefficients, only one set will give 

the same energy response fbn아ion that was assumed to 

be the actual measurement. So the task in this work will 

be to establish that the initially given set of absorption 

coefficients could be found numerically. The procedures

Ta이e 1. Coordinates of the source and receiver positions. The 
units are in metres.

Source pojIioti Receiver position
Case 1 (9.82, 5.35, 1.70) (5.82, 5.35, 1.70)
Case 2 (9.82, 6.35, 2.70) (5.82, 4.35, 1.70)
Case 3 (10.82, 3.35, 1.50) (4.82, 6.35, 2.00)

will be described below in detail.

2.1. Definition of an Error Function
If a room has n wall surfaces whose absosrption 

coefficients are ai, a2, 03,…，ans then an n-dimensional 

state space, (a i, a 2, a 3, ... , a n), can be defined. If the 

wall surfaces are covered with only two acoustic materials, 

a two dimensional (a 1, a 2) state space can be defined. 

The configuration of a modelled room to be used in this 

work is shown in Figure 1. It is assumed that the wall 

surfaces are covered with only two acoustic materials. The 

absorption coefficients of the floor, and two ceilings were 

given the value of 0.65. Those of the four side wall 

surfaces were given the value of 0.35. Three pairs of the 

positions of monopole source and receiver were used to 

establish that the same absorption coefficients, i. e. 0.65 

and 0.35, co마d be obtained for each pair. To distinguish 

between them, "Case 1”，“Case 2”，"Case 3” were used 

as specified in Table 1. Each case will give a different 

energy impulse response. The number of ray particles 

released from the monopole source is about 18,000. For 

each of the three cases the ray tracing model with the set 

of two absorption coefficients (0.65, 0.35) produced the 

energy impulse response functions as presented in Figure 

2. Let us assume these to be the real measurements. 

Among the many sets of (“ 1, a 2), only (0.65, 0.35) will 

produce the same energy impulse response functions as 

those shown in Figure 2. The problem at hand will be to 

investigate whether these two values of (0.65, 0.35) can

ln-sltu Determination of Absorption Coefficie거s in a Room 11



(a) Case 1 (a) Casel

0 50 100 150 - 20C

(b) Case 2 (b) Case 2

Figure 2. Comparison of the energy impulse response functions 
in 1 msec res이ution.

Figure 3. The energy impulse response functions in 5 msec resolution 
from the detection of the first reflected sound. The arrival 
times of the first reflected sound are 15 msec for Case 1, 
17 msec for Case 2, and 22 msec for Case 3, |•especiiv애y.

be found among infinitely many sets of (a i, a2) by 

minimizing the errors between the assumed real measure

ment and the results of the ray tracing simulation tried 

with many sets of absorption coefficiens.

An error function should thus be defined first and it will 

be a function of ((21, a 2). There can be an infinite 

number of ways of defining an error function depending 

on the characteristics of each problem at hand. In this 

work, the error function was defined as follows. From the 

three assumed measurements shown in Figure 2, the 

detection of direct sound occurred at t = 11, 13, 19 msec, 

respectively. Since the direct sound does not contain any 

information about the absorptive properties of wall surfaces 

at all, it would be better not to include this in the error 

function. From the time when the first reflected sound 

is detected, each 5 consecutive values were all added 

together, i.e. in a 5 msec resolution. The energy impulse 

response functions in a 5 msec res이ution are shown in 

Figure 3 for each of the three cases. Likewise this procedure 

can be applied to the simulated energy impulse response 

fimctions obtained from the ray tracing model tried with 

many sets of absorption coefficients. Let us denote M(i), 

at the i-th interval at 5 msec time res이ution, as the value 

of the energy impulse response function from one of the 

assumed real measurements, and R(i) as the value of an 

energy impulse response function obtained from the ray 

tracing model with an arbitrary set of absorption 

coefficients ((2 i, a 2). An error function E( a 1, a 2) can 

be defined by

E(a心) = 2 版⑴-R(아2 (1)

where i means the i-th interval at 5 msec time resolution.
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Figure 4. The error cont이샤” plots f이 the three cases which are 
listed in Table 1. In each of the three cases there exists 
only one glob기 minimum at (0.65, 0.35).

Among the infinite number of the set (a i, a2), only 

one set (0.65, 0.35) will give a global or true minimum 

of E( a 1, Q2), which is zero in this problem. Thus the 

objective is to find the ((2 1, a 2) which minimizes E( a 1, 

a 2) globally by using numerical methods. Before delving 

into the numerical method the error function E( a 1, a 2) 

was computed at each grid of the coordinate (0.05i, 0.05j)

alpha 1

Figure 5. The error contour plot for Case 1 with an ill-defined 
error function. There are many local minima as well as 
the true global minimum at (0.65, 0.35).

such that i, j = 0, 1, 2,…，20 in order to visualize the 

form of the error function. So E( a 1, (22) was computed 

on 441 points in (ab a 2) space. A contour plot which 

has some lowest levels of E( a 1, a 2) are shown in Figure 

4, for each of the three cases.

An error fimction can be defined in a different way. 

For Case 1, if the direct sound is included and a time 

resolution of 50 msec is chosen, a new error function can 

be similarly defined by equation(l), but in this case "i" 

in equation(l) means the i-th interval at 50 msec time 

resolution. This will produce an error contour plot shown 

in Figure 5. Some local minima as well as the true global 

minimum can be easily seen. This error function can be 

considered as ill-defined. Even in this case the numerical 

methods should be capable of finding the true global minimum 

with the presence of many other local minima.

2.2. Numerical Techniques
Since the calculation of the gradients of the error 

function in ((? 1, a 2,…，°n) space is very difficult to 

obtain in this particular problem, a numerical method 

which does not require gradient data are considered. 

However, this method also has the possibility of being 

trapped in local minima, thus failing to find the true global 
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minimum. Therefore they should be tried repeatedly with 

different initial positions in (a i, a2, an) space to 

confirm that the final positions the numerical technique 

has reached are identical. In higher dimensional space of 

(ai, a2, an), in particular, each try can possibly end 

up with a different position, which means that the al

gorithm fails to find the true global minimum. This is true 

of numerical methods xMiich require gradient data. However, 

the simulated annealing method can have a much better 

chance of finding the true global minimum since it can 

escape from local minima according to some probabilistic 

criterion based on the properties of the system being 

investigated. In this work, the simulated annealing method 

combined with the downhill simplex method is used.

2.2.1. Downhill Simplex Method
This method was devised by Nelder and Mead[4]. This 

method needs only functional evaluations, not gradient. It 

is not a very efficient method in respect of the number 

of calculations. However it is quite a good method in a 

relatively low dimensional state space (a 1, a 2,…，Qn) 

of absorption coefficients. The basic principles of this 

method are well explained by Jacoby et. al.[5]. This is

Figure 6. The vertices of the starting simplex are located at x； 
xf x? This figure represents the reflection, expansion, 
and contraction operations in the downhill simplex 
method in a two dimensional space ((21,尊).

based on the comparison of the error function values at 

the (n + 1) vertices of a general simplex in (a 1, a2,…， 

(2n) coordinate space and gradually transforming this 

simplex towards the minimum point. In a two dimensional 

space a simplex is a triangle, and in a three dimensional 

space it is a tetrahedron. Initially, e.g. in a two dimensio

nal space, three vertices of a triangle are arbitrarily chosen 

as a starting simplex. This is shown in Figure 6. At each 

of the three vertices, the error function values are computed, 
x" is the highest point of the error function, which means 

that the error evaluated at x" gives the highest value, x is 

the second highest point. xz is the lowest point. This method 

moves X to a lower point by the three basic operations. 

x is the centroid of all x‘ except i = h, given by (Refer 

to Figure 6)

Firstly, a reflection operation is tried, which can be re

presented by

xr = x° + a(x° - xh\ 0 <a <1 (3)

where the usual choice of is 1.0. If the value of the error 
function at x is smaller than that at x”, then x is selected 

as a vertex of a newly transformed simplex. For this case 
the vertices of the new simplex are located at x‘，x： x. 

Otherwise an expansion operation is tried, x in equation 

(3) is expanded in the direction along which a further 

improvement of the error may be expected. This can be 

represented by

xe=x°+y(x°-x/,))7> 1 (4)

where the usual choice of / is 2.0. If the value of the 

error function at 吳 is smaller than that at 跖 then Xe is 

selected as a vertex of a newly transformed simplex. 

Otherwise a contraction operation is tried, which can be 

represented by

xc = x°+P(xh-x"), 0<^<l (5) 
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where the usual choice of is 0.5.

After x is transformed into a new vertex, the error 

vahies at each vertex of the newly transformed simplex 

are compared in order to detennine which are the highest, 

second highest, and lowest points. The above operations 

are repeated until the test for convergence is satisfied, 

which is given by

岑[空项宜虹“
4 « + 1 (6) 

where r is usually a small, preselected tolerance, e.g. 10-6. 

Another possible convergence test will be to te마 whether 

the fractional difference between the fimction values at the 

highest and the lowest points is smaller than a t이erance 

value, which can be stated as

心)-E(x')_
E(x") (7)

If the convergence test is satisfied, the computation is 

terminated. This convergence test should be undertaken 

for every current simplex.

Although this method has some advantages, it also has 

some disadvantages as well. One of them is that there is 

a possibility that the final simplex may collapse into a 

local minimum not finding the true global minimum. It 

is a good idea to repeat this method by starting from 

different initial simplexes.

2.2.2. Simulated Annealing Method
This method, in its essence, is deeply related with the 

fimdamentals of statistical physics and was originated by 

Metropolis et al. [6]. As shown in Fi잉ire 7, when a system 

is in thermal equilibrium with a heat bath which is at a 

constant temperature T then the probability Pr of finding 

the system in any one particular microscopic state(or 

microstate) r of energy Er is given by[12]

-Er
e kT

Pr =------五
方灯 (8)

r

where the denominator is called a u partition function，＞ 

and its sum is carried out over all the accessible microstates 

of the system. The symbol k denotes the Boltzmann 

constant, and T is the abs이ute temperature in Kelvin. 

Equation(8) is known as "Boltzmann distribution*. By 

utilizing Boltzmann distribution, it is possible to get out 

of a local minimum and to reach the true glob시 minimum. 

By analogy the error function E( a i, a2) can be comparable 

to Er in equation(8), and ((21, or 2) to a microstate. Let us 

denote "c" as current state and "n" as next state. Then 

(a a2)c is the current state, and (a 1,。2)n is the next 

state. Then (Pn/Pc) can be written, according to the 

Boltzmann distribution, in the form 

p -(EK)
= e kT

Pc (9)

where Ec is the current error value at (a 1, a 2)c and

En is 산le error value at (a 1, a 2)n- If En is smaller than 

Figure 7. A system in thermal equilibrium with a heat bath. The heat bath is at a consta가 temperature T. The system and heat bath 
are thermally interacting with each other b나 they are is이ated from their environment. Thus the total energy E remain오 

constant.
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Ec, i.e. 0 <Pn/Pc > 1, then (a i, a2)n is always chosen as 

the new current state and En always chosen as the new 

current error value. If En is bigger than 瓦，i.e. 0<Pn/Pc < 1, 

(tfi, a”)n and En could become a new current state and 

a new current otot value according to a certain probabilistic 

criterion. At first glance this looks strange, but if we are 

trapped in a local minimum, any next state near a local 

minimum (current state+incremental change of state) will 

always give a bigger value than the value at the local 

minimum. So there is no way to get out of a local 

minimum if a smaller error value is always to be chosen 

as a new current error value. It is possible to set a 

probabilistic criterion which makes it possible for a value 

bigger than the current error value to become a new 

current value. By taking the natural logarithm of 

equation(9), and generating a random number which is 

between 0 and 1, this criterion can be written by[7]

T x log(random) < -(£„ -Ec) (10)

where (random) means a random number between 0 and

1. In equation(lO) the Boltzmann constant k need not be 

included. Here T is a control parameter which is analogous 
to temperature. At the starting value of T, e.g. 106, the 

process of finding a new minimum should be carried out 

as many times as possible. T should be lowered sowly 

to simulate the annealing process. At the next lower value 
of T, e.g. 0.9 X 106, this searching process should be 

carried out again. It can be understood that major improve

ments would be accomplished at high values of T and 

small refinements would be accomplished at low values 

of T as T is being lowered slowly. It seems that the 

simulated annealing method still leaves room for fixrther 

improvement and development for its detailed application.

III. Numerical Res니ts

The entire process of searching for the global minimum 

is listed in Table 2 for Case 1 o미y. The last line 

corresponds to the true global minimum where the 

searching progs came to an end. The nximerical technique 

combined with the downhill simplex method and 

simulated annealing method could find the true global 

minimum, and thus the correct set of absorption coefficients 

(0.65, 0.35). For Case 2 and Case 3, they also gave the 

same results, (ai, a 2) in each line corresponds to the 

lowest point x in each current simplex and E(a 1, a 2) is 

the error value at x. (Refer to Figure 6)

Also for the case of ill-defined error function for Case 

1 as shown in Figure 5, the numerical technique used 

could find the true global minimum with the presence of 

the many local minima. This numerical technique could 

find the true global minimum in other situations where

(1) The correct set of absoprtion coefficients (a a 2) 

are in their extremities such as (0.01, 0.99).

(2) The room shape is very disproportionate.

(3) Combination of (1) and (2).

All the above procedures were carried out fbr the case

Table 2. Searching process for the 이ob게 minimum for Case 1. 
indicates some intermediate searching process 

which is omitted.

•- ■' . •' a 1 • <X2 틴 a b w Q

0.010 0.900 448.681
0.025 0.880 423.263
0.020 0.900 430.133
0.010 0.900 448.681
0.020 0.900 430.133
0.018 0.930 432.507
0.003 0.950 458.833
0.031 0.925 409.098
0.049 0.867 382489
0.111 0.849 293.459
0.384 0.688 63.880
0.977 0.221 69.751
0.402 0.630 53.198
0.977 0.221 69.751
0.241 0.790 157.592

... ...
0.653 0.340 0.022
0.662 0.352 0.129
0.653 0.340 0.022
0.653 0.363 0.053
0.650 0.350 0.000
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of three dimensional state space (a i, a 2, a 3), i.e. when 

the wall surfaces of a room are covered with three acoustic 

materials. The numerical technique used could reach the 

correct set of absorption coefficients (a 1, a 2, a 3).

IV. Conclusion

The simulated annealing method combined with the 
>

downhill simplex method could search for the correct set 

of the absorption coefficients. By using the simulated 

annealing method it was possible to escape from many 

local minima and to reach the true global minimum. This 

technique could search fbr three unknown absorption 

coefficients as well as two. The error minimization in 

multi-dimensional space higher than three dimensional 

space will require further development together with faster 

computing power.

The numerical technique was extended to the phase 

image model in order to investigate whether the correct 

values of the acoustic impedances could be obtained. 

However, this attempt was not computationally possible 

due to the wide range of the acoustic impedance values 

of any single acoustic material, and very long computation 

time. An attempt to overcome these difficulties will be left 

as a future work.
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