• Title/Summary/Keyword: Improved Complex Method

Search Result 559, Processing Time 0.027 seconds

The chemical speciation and analysis of trace elements in sediment with neutron activation analytical method(NAA) and atomic mass spectrometry (중성자 방사화분석법과 원자질량분석법을 이용한 침전물 시료속에 존재하는 미량원소들의 화학종 분류 및 분석)

  • Nam, Sang-Ho;Kim, Jae-Jin;Chung, Yong-Sam;Kim, Sun-Ha
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.358-367
    • /
    • 2003
  • In this research, first of all, the analytical methods for the determination of major elements in sediment have been developed with ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The analytical results of major elements (Al, Ca, K, Fe, Mg) with Cool ICP-MS were much better than those with normal ICP-MS. The analytical results were compared with those of NAA (Neutron Activation Analysis). NAA were a little superior to ICP-MS for the determination of major elements in sediment as a non-destructive trace analytical method. The analytical methods for the determination of minor elements (Cr, Ce, U, Co, Pb, As, Se) have been also developed with ICP-MS. The analytical results by standard calibration curve with ICP-MS were not accurate due to the matrix interferences. Thus, the internal standard method was applied, then the analytical results for minor elements with ICP-MS were greatly improved. The analytical results obtained by ICP-MS were compared with those obtained by NAA. It showed that the two analytical methods have great capabilities for the determination of minor elements in sediments. Accordingly, the NAA will play an important role in analysis of environment sample with complex matrix. ICP-MS also will play an important role because it has a great capability for the determination of Pb that could not be determined by NAA.

Chip-level NFP Calibration and Verification Using Improved Probe for NFS Standardization (NFS 표준을 위한 개선된 프로브를 이용한 칩 수준 NFP 측정값 교정 및 검증)

  • Lee, Pil-Soo;Wee, Jae-Kyung;Kim, Boo-Gyoun;Choi, Jai-Hoon;Yeo, Soon-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.25-34
    • /
    • 2012
  • New calibration method for the near-field scanning (NFS) system is presented. The proposed calibration method consisted of a new near-field antenna (NFP) and newly devised patterns as circular patch patterns (CPPs) and meander patterns (MPs). The proposed patterns were used for improving spatial resolutions and simplifying a calibration procedure of the NFP compared to the conventional method defined in the IEC61967-3 and 6. Also, the effect of the length of NFPs on attenuation characteristics was investigated with length of 8mm and 30mm. For them, we designed and fabricated CPPs of diameter (D) = 20, 40, 60, and 100mm and MPs of various widths and spaces. We found the reverse relations between spatial resolutions and heights of measuring points by using simplified calibration procedure. The testing result shows that the spatial resolution of $120{\mu}m$ at height of $200{\mu}m$ was verified without complex correlation algorithms under 8GHz. For manufacturing cost all patterns and the NFP were realized with low-cost fabrication using PCB (FR-4) not by a conventional LTCC process. For verification of chip-level EMC from the results, near-field scanning system (NFSS) having step resolution of Sub-micron scale was produced and by using the proposed NFSS and proposed NFP measurement of chip shows accurately the shape of the resolution of $200{\mu}m$ patterns for securing a high level of chip-level EMC verification.

Development of Generating Technique for Triangular Mesh by using Distinct Element Method (개별요소법을 이용한 삼각망 생성기법 개발)

  • Kim, Nam-Hyeong;Yun, Hyeon-Cheol;Hur, Young-Teck
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.367-373
    • /
    • 2010
  • When the numerical analysis is carried out, it is necessary to set proper elements as a feature of analysis domains for more accurate simulations. In this study, Distinct Element Method(DEM) is applied, only considering repulsive force and tensile force except for frictional force and resisting force of particle. When the filled particles with initial Quad-tree type is relocated by DEM, a blank space existing among the particles can be minimized because the shape of particle is circular. Finally, it is the effective feature that the centroidal disposion of the particles is similar to an equilateral triangle. Triangular mesh are formed by using the Delaunay triangular technique on these relocated particles, the quality of triangular mesh is more improved by carrying out Laplace interpolations. The compared result of Aspect Ratio before and after the Laplace interpolation is shown that although the quality of triangular mesh made by DEM is good, the later triangular mesh are higher quality than the formers. In this study, although the developed technique takes a longer calculational time than the previous technique to generate triangular mesh, it is considered that the applicable possibility is very high in the generation of finite element mesh about wave analysis and various numerical simulation to need a complex or reappearance of exact topography.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

Applicability of Composite Polyurea Method Considering the Required Performance in Underground Parking Lot Upper Slab (공동주택 지하주차장 상부슬래브의 요구성능을 고려한 복합형 폴리우레아 공법의 적용성 검토)

  • Lee, Jung-Hun;Choi, Eun-Kyu;Song, Je-Young;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • In this study, problems of the waterproofing methods in which water leakage occurs in the upper slab of the underground parking lot of apartment houses and the requirements considering the characteristics of the upper slab, and selected the appropriate performance(proposal) for the composite polyurea process are reviewed. As a result of the study, it is necessary to review performance such as responsiveness to upper slab of the multi-unit underground parking lot that is comprised of (1) crack and behavior responsiveness, (2) surface integrity, (3) vertical watertight stability, (4) pressure layer construction, (5) impact and pressure response and (6) vehicle moving load. As a result of evaluating 5 items corresponding to the requirements for the soft and hard complex polyurea, all of them were found to meet the conditions, and each materials were improved by compounding the materials that had problems when applying a single-ply method, thereby clarifying the advantages and disadvantages of the material property. However, in order to apply to the actual site, additional evaluation on site applicability such as mock-up evaluation should be conducted, and subsequent studies on the applicability of the market through review of economic feasibility and maintenance is required.

The Study of Reaction Characteristics of V/W/TiO2 Catalyst Using Se-TiO2 Support On NH3-SCR Reaction (Se-TiO2 지지체를 이용한 V/W/TiO2 NH3-SCR 촉매의 반응 특성 연구)

  • Lee, Yeon Jin;Won, Jong Min;Ahn, Suk Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2021
  • In this study, an experiment and a reaction characteristic study were conducted to enhance the reaction activity of V2O5/WO3/TiO2 at 300 ℃ or less by adding selenium to the support, in a selective catalytic reduction method using ammonia as a reducing agent to remove nitrogen oxides. Se-TiO2 and TiO2 were synthesized using the sol-gel method, and used as a support when preparing V2O5/WO3/TiO2 and V2O5/WO3/Se-TiO2 catalysts. The reaction activity of our catalyst was compared with that of a commercial catalyst. The denitration efficiency of the catalyst using TiO2 prepared by the sol-gel method was lower than that of the catalyst prepared using commercial TiO2, but was improved by the addition of selenium. Thus, the effect of selenium addition on the catalyst structure was analyzed using BET, XRD, Raman, H2-TPR, and FT-IR measurements and the effect of the increase in specific surface area by selenium addition and the formation of monomer and complex vanadium species on reaction characteristics were confirmed.

A Study on Spatial Data Integration using Graph Database: Focusing on Real Estate (그래프 데이터베이스를 활용한 공간 데이터 통합 방안 연구: 부동산 분야를 중심으로)

  • Ju-Young KIM;Seula PARK;Ki-Yun YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.12-36
    • /
    • 2023
  • Graph databases, which store different types of data and their relationships modeled as a graph, can be effective in managing and analyzing real estate spatial data linked by complex relationships. However, they are not widely used due to the limited spatial functionalities of graph databases. In this study, we propose a uniform grid-based real estate spatial data management approach using a graph database to respond to various real estate-related spatial questions. By analyzing the real estate community to identify relevant data and utilizing national point numbers as unit grids, we construct a graph schema that linking diverse real estate data, and create a test database. After building a test database, we tested basic topological relationships and spatial functions using the Jackpine benchmark, and further conducted query tests based on various scenarios to verify the appropriateness of the proposed method. The results show that the proposed method successfully executed 25 out of 29 spatial topological relationships and spatial functions, and achieved about 97% accuracy for the 25 functions and 15 scenarios. The significance of this study lies in proposing an efficient data integration method that can respond to real estate-related spatial questions, considering the limited spatial operation capabilities of graph databases. However, there are limitations such as the creation of incorrect spatial topological relationships due to the use of grid-based indexes and inefficiency of queries due to list comparisons, which need to be improved in follow-up studies.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

Validation Technique of Simulation Model using Weighted F-measure with Hierarchical X-means (WF-HX) Method (계층적 X-means와 가중 F-measure를 통한 시뮬레이션 모델 검증 기법)

  • Yang, Dae-Gil;HwangBo, Hun;Cheon, Hyun-Jae;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.562-574
    • /
    • 2012
  • Simulation validation techniques which have been employed in most studies are statistical analysis, which validate a model with mean or variance of throughput and resource utilization as an evaluation object. However, these methods have not been able to ensure the reliability of individual elements of the model well. To overcome the problem, the weighted F-measure method was proposed, but this technique also had some limitations. First, it is difficult to apply the technique to complex system environment with numerous values of interarrival time because it assigns a class to an individual value of interarrival time. In addition, due to unbounded weights, the value of weighted F-measure has no lower bound, so it is difficult to determine its threshold. Therefore, this paper propose weighted F-measure technique with cluster analysis to solve these problems. The classes for the technique are defined by each cluster, which reduces considerable number of classes and enables to apply the technique to various systems. Moreover, we improved the validation technique in the way of assigning minimum bounded weights without any lack of objectivity.

Caricaturing using Local Warping and Edge Detection (로컬 와핑 및 윤곽선 추출을 이용한 캐리커처 제작)

  • Choi, Sung-Jin;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.403-408
    • /
    • 2003
  • A general meaning of caricaturing is that a representation, especially pictorial or literary, in which the subject's distinctive features or peculiarities are deliberately exaggerated to produce a comic or grotesque effect. In other words, a caricature is defined as a rough sketch(dessin) which is made by detecting features from human face and exaggerating or warping those. There have been developed many methods which can make a caricature image from human face using computer. In this paper, we propose a new caricaturing system. The system uses a real-time image or supplied image as an input image and deals with it on four processing steps and then creates a caricatured image finally. The four Processing steps are like that. The first step is detecting a face from input image. The second step is extracting special coordinate values as facial geometric information. The third step is deforming the face image using local warping method and the coordinate values acquired in the second step. In fourth step, the system transforms the deformed image into the better improved edge image using a fuzzy Sobel method and then creates a caricatured image finally. In this paper , we can realize a caricaturing system which is simpler than any other exiting systems in ways that create a caricatured image and does not need complex algorithms using many image processing methods like image recognition, transformation and edge detection.