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Abstract : This paper makes an effort to compare the recently evolved soft classification method
based on Linear Spectral Mixture Modeling (LSMM} with the traditional hard classification methods based
on lterative Self-Organizing Data Analysis ISODATA) and Maximum Likelihood Classification (MLC)
algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable
coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISSHII
and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these
satellite image data to produce maps of 5, 10, 15 and 20 wetlend classes for each of three contrast
coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes
was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete
multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor
accuracy compared to MLC classification that produced maps with improved accuracy. However, there
was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was
derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal
factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate
spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV)
of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the
classification process was a major problem to deriving accurate wetland cover types, in spite of the
increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the
classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM)
was described to calculate the spectral mixture and classify [IRS-1C/1D LISS-III and Landsat-5 TM
Imagery. This method considered number of reflectance end-members that form the scene spectra,
followed by the determination of their nature and finally the decomposition of the spectra into their end-
members. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with
normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from
the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were
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positively correlated (¥ = 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyarm and Pitchavaram
respectively) and NDVI and soil fraction values were negatively correlated (r? =0.53, 0.39 and 0.13),
indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of
LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would
seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to
representing continuous gradations between different habitat types.

Key Words : IRS-1C/1D LISSHI, Landsat-5 TM, LSMM, Hard and soft classification, Wetlands,

Southern India
1. Introduction

The southern Indian coastal zone, an extremely
important socio-economic aspect of the country, is
endowed with the presence of extensive and diverse
mangrove wetlands, marsh, mudflats, sand dunes,
lagoons, beaches and coral reefs. Among these, the
mangrove wetlands act as a barrier against cyclones,
prevent coastal erosion, and provide nursery grounds for
a number of commercially-important fish, prawns and
crabs, and also play an important role in enhancing the
fishery production of the adjacent neritic waters by
exporting organic and inorganic nutrients (Shanmugam,
2002; Selvam, 2003). The environmental setting of these
multiple-use ecosystems is governed by physical forces
such as geomorphology of the coast, climate, tidal
amplitude and duration, and quantity of fresh water
inflow (Thom, 1984). These wetlands forming habitats
for many biological communities are highly dynamic
and complex in nature and are fragile ecosystems often
being affected both seasonally and annually by various
natural and anthropogenic factors, leading to
degradation of the habitats. A better understanding of
wetland functions under a complex interplay of physical,
chemical, biological and geological processes, and
mapping and monitoring of ecologically important and
sensitive areas of these regions are thus of importance in
better coastal zone management (Shanmugarm, 2002).

Rapid, repeatable and relatively large-scale
environmental monitoring is essential to define spatial

patterning and dynamics of wetland vegetation cover

and productivity on marsh surfaces, to characterize the
changing boundaries between mudflat, marsh, mangrove
and sand dune environments, and to provide input into a
better understanding of vegetation, soil and topographic
interactions on intertidal surfaces. Accomplishing these
with the conventional field sampling and surveying is
not feasible, because they are time consuming and high
cost processes, and moreover some of the areas are not
accessible. Thus, establishment of appropriate mapping
tools and associated protocols offer the possibility of
tracking and monitoring changes in such complex
systems of mangrove-marsh-mudflat and sand dunes
associated with near-future change in environmental
conditions. Spatially extensive and non-invasive remote
sensing data due to its synoptic, repetitive and multi-
spectral nature provide a wide range of information over
inaccessible and larger areas in frequent intervals and
has made remote sensing technology a useful tool for
mapping and monitoring the wetland conditions, amount
of vegetation biomass and the degree of water
inundation and conditions (Green et al., 1996; Smith et
al., 1998; Ramsey et al., 1999).

Mapping of coastal wetland cover types using
remotely sensed data is generally accomplished through
image classification techniques such as ISODATA or
Maximum Likelihood Classifiers (MLC) (Bolstad and
Lillesand, 1991; Franklin, 1994; Ramachandran et al.,
1998). These techniques referred to as hard or per-pixel
classifiers are, however, not successful in many cases
because they assign each pixel to a class through

considering its similarities with the class or with other
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classes (Jensen, 1996), eventually the mixed pixels are
assigned to the most similar class, and mush of the
original spectral information can no longer be retrieved
from the classified image, thus resulting in decreased
classification accuracy. Still visual analysis is often
reported to obtain higher accuracy (Martin, 1989; Mas
and Ramirez, 1996). As the wetland habitat types appear
to be small and continuous with no distinct boundaries,
it is therefore desirable to unmix mixed pixel signatures
to identify habitat types which are present at the sub-
pixel level. Previous studies have demonstrated that soft
classification techniques such as Linear Spectral
Mixture Modeling (LSMM) and fuzzy classification
techniques are likely to give a more accurate map than
hard classification techniques (Fisher et al., 1990; Foody
et al., 1994; Garcio-Haro et al., 1996; Bastin, 1997; Pu
et al., 2003). Of the available soft classifiers, the LSMM
is an excellent approximation technique suitable for
handing the spectral mixture problem, mainly because
(1) it does not require extensive training data, (2) it
produces a set of maps, one for each class types
concerned, and (3) it was extensively applied to extract
the abundance of various components within the mixed
pixels of satellite data of similar environments (Robert ef
al., 1993; Ustin et al., 1996; Cochrane and Souza, 1998;
Shanmugam, 2002).

The objective of this paper is to evaluate the accuracy
of traditional hard classification methods based on
ISODATA and MLC algorithms, and to compare with
the recently evolved method based on LSMM for
mapping complex coastal wetland cover types of
southern India using IRS-1C/1D LISS-IIT and Landsat-5
TM imagery. The results from applying LSMM were
assessed by comparison with those produced by MLC
algorithm and with ground truth data, collected from the
field survey coincident with the satellite overpass on

Pitchavaram and Vedaranniyam wetlands.

2. Study Area, Data and Field Survey

The study area encompassing three different coastal
wetland sites in the southern part of India are
Pitchavaram, Vedaranniyam and Rameswaram.
Pitchavaram coastal wetland lying between the
coordinates of latitude 11° 20" to 11° 30" N and
longitude 79° 45" to 79° 51" E (Fig. 1) represents a

- heterogeneous mixture of mangrove ecosystem. It is an

estuarine type of mangrove connected to the Vellar
estuary in the north and Coleroon estuary in the south
along with the Killai lagoon by a well developed
backwater system, which is referred to as the Vellar-
€oleroon estuarine complex, and is known for its
luxuriant growth of mangrove plants with high
productivity and diversity of fauna and is provided with
rich detritus, nutrients, salts, vitamins, trace elements etc.
The total area of the Vellar-Coleroon estuarine complex
is about 2335.5 ha, of which only 241 ha (10.32%) is
occupied by dense mangrove vegetation, nearly 593 ha
(25.41%) by halophytic vegetations like Suaeda, 262.5
ha (11.24%) by barren mud flats, and 1238.5 ha (53.0%)
by barren high saline soil. The most dominant mangrove
and marsh species are Rhizophora apiculata, Avicennia
marina and Suaeda maritima. Cattle grazing and felling
are mainly responsible for the high degree of degradation
of the Pitchavaram mangroves (MSSREF, 1995).
Vedaranniyam wetland is one of the largest coastal
wetlands of southern India situated 150km south of
Pitchavaram wetland, covering latitude 10° 15" to 10°
30" N and longitude 79° 20" to 79° 53" E (Fig. 1). It is
predominantly formed by marine and partly by fluvial
actions, comprising of lagoons, mudflats, marsh with
mud/swamp, mangroves, scrubs, sand dunes, spits etc.
The tidal swamp forest and mangroves are of evergreen
plant communities found along the shores of sheltered
creeks, fringes of the lagoons, deltas and islands below

the flood tide mark. Six distributaries of the Cauvery
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Figs. 1a-d. Location map of three coastal wetland sites of southern India (Tamit Nadu) (a), and
characteristic surface cover types in the field (b-d).

delta discharge their water into these lagoons and
mudflat before reaching the sea. The topography of the
fringe area of the mangroves provide conditions for high
frequency and extent of tidal flushing thereby creating
favorable environmental conditions, particularly salinity,
for the growth and regeneration of the species like
Rhizophora apiculata, Rhizophora mucronata, and
Suaeda maritima. The annual temperature varies
between 30° to 40° C and the annual rainfall ranges from
1000 to 1500mm

In contrast, Rameswaram wetland is located within 9°
8 t09°27 Nand 78° 55" to 79° 30" E in the
southeastern part of the Vedaranniyam wetland,
representative of a complex coastal sand dune
ecosystem associated with the disconnected masses of
huge coral reefs fringing Rameswaram and other islets
in Gulf of Mannar. Human interference on deforestation
and reclamation process as well as coral mining leads to

the deterioration of sand dune ecosystem and

environments of Rameswaram.

The primary data set consists of IRS-1C/1D LISS-III
and Landsat-5 TM imageries as well as survey of India
topographic maps of 1: 50, 000 scale (Table 1). Frequent
and severe cloud cover did not allow the study areas to
be captured by these sensors during similar periods/
seasons, and therefore images of Vedaranniyam and
Rameswaram during dry season (July) and of
Pitchavaram during wet season (January). Prior to the
analysis, digital values recorded at the top of the
atmosphere were converted to total radiance values at
the satellite level and corrected for the atmospheric
effects by dark-pixel substration technique (Chavez,
1988). As the radiometrically and atmospherically
corrected data contained geometric errors from the
sources, that range from variations in the altitude,
attitude, and velocity of the sensor platform, to factors
such as panoramic distortion, earth curvature, earth

rotation, relief displacement, and nonlinearities in the
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Table 1. Characteristics of IRS-1C/1D LISSHIl and Landsat-5 TM imagery of the three wetland study sites.

Sensor Spectral range ((m) Resolution (m) Date Orbit (path/row) Topographic map
IRS-IDLISS-3 )~ 0.52-0.59,0.62- 068, 235 14-01-1998 102/65 58 M/15
(Pitchavaram) 0.77-0.86,1.55-1.70
IRS-ICLISS-3 |  0.52-0.59,0.62 - 0.68 58 N/7,58 N/11
’ ’ 235 19-07-2000 102/66 ’
(Vedaranniyam)| 0.7 - 0.86, 1.5 - 1.70 and 58 N/15
0.45-0.52,0.52 - 0.60
- ’ ’ 580/3,58 017
LandsatSTM | 0 069, 0.76 - 0.90, 30 12-07-1989 142/54
(Rameswaram) 155175 and 58 O/8

sweep of a sensor’s IFOV (Lillesand and Kiefer, 1994),
it was necessary to georeference these images with
respect to the high resolution IRS-1C panchromatic (5
m) image projected polyconically on a 1:50,000 scale
topographic map as mentioned in Table 1. Adequate
number of ground control points (GCPs = ((n+1) (n+2))
/2) was selected in order to improve the georeferencing
accuracy to fall within 0.3 to 0.5 pixels.

For validation of LSMM, field survey was conducted
on 19 July 2000 over Vedaranniyam wetland in order to
collect the ground truth data, pertaining to spectral
reflectance, vegetation, soil, moisture cover fractions,
from number of locations with the help of global
positioning system (GPS). This was the period
corresponding to the IRS-1C LISS-IIT overpass on this
area. Canopy and soil spectroscopic measurements were
collected using a handheld multispectral groﬁnd truth
spectroradiometer (GTR) along the 750m mangrove-
mudflat (MM) transect running from the fringe of the
lagoon to mudflat areas in the western part of
Vedaranniyam study site. Spectroradiometric
measurements also covered areas of turbid waters, salt
marsh and marsh in swamp, mangroves, and wet and
dry mudflats. The total number of measurements made
between 9a.m and 4p.m was 16 along this transect and
12 in the surrounding areas. Because of the
inaccessibility, vegetation cover fractions in dense
mangroves along the fringes of lagooﬁ and marsh in

swamps were not adequately determined with these

instruments. Soil moisture and organic matter data were
established from soil samples collected coincidently
with the spectroradiometric measurements using
laboratory methods (Bowman et al., 1991; Hummel et
al., 2001). For the selection of training data and
assessment of hard classification accuracy, a large
number of ground truth data was also assimilated from
other parts of Vedaranniyam and Pitchavaram wetlands
before, during and after IRS IC/1D satellite overpass on
these areas. For Rameswaram, field data collected from
a number of points as a part of wetland monitoring
program by Department of Geology and Institute of
Ocean Management (IOM) at Anna University was used
to assess classification accuracy of Rameswaram

wetland cover features.

3. Methods

1) Traditional Hard Classification Methods

The traditional methods for inferring characteristics
about the surface cover from satellite remotely sensed
data are to classify each pixel into a specific land cover
type based on a predefined classification scheme. These
methods employ mathematical decision rules to assign
image pixels to clusters representing land cover
categories, in the feature space delimited by the spectral
bands of the image. This study concentrated on two

well-known methods: a non-parametric or unsupervised
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classification based on Iterative Self-Organizing Data
Analysis (ISODATA) and a parametric or supervised
classification based on Maximum Likelihood
Classification (MLC) method. The detailed description
of these methods may be found in Shanmugam (2002).
In order to produce a single map of likeliest class, the
MLC requires a number of training samples for each
class. These training samples were selected from the
image itself based on ground truth information. Prior to
the classification, training sample signatures were
evaluated to perform better classification using
separability analysis by transformed divergence (TD) and
Jeffries-Matusita (JM) distance measures (Swain and
Davis, 1978). These are statistical measures of distance
between two signatures and calculate for any combination
of bands that will be used in the classification. The values
of lower and upper bounds of TD and JM distance are
respectively, 0 and 2000, and 0 and 1414. If the calculated
divergence is equal to the upper bound then the signatures
can be said to be totally separable in the bands being
analyzed. A calculated divergence of zero means that the

signatures are inseparable.

2) Linear Spectral Mixture Modeling
(LSMM)

Spatially heterogeneous mixtures of mangrove and
marsh vegetation, soil and moisture with indefinite
boundaries characterize coastal wetland ecosystems of
southern India. For IRS-1C/1D LISS-IIT and Landsat-5
TM, the instantaneous field of view (IFOV) is large
enough that pixels comprise mixtures of these features.
This inevitably means more cover types are included
within one pixel and therefore more mixing of material
spectral signatures. Sub-pixel mixing in remote sensing
dictates that pixel reflectance cannot be simply
interpreted in terms of properties of a single cover type.
Accounting for sub-pixel variations in cover types is
therefore an essential step for analyzing pixel reflectance

in such heterogeneous regions (Asner and Heidebrecht,

2002). Thus, the goal of linear spectral mixture
modeling (LSMM) is to estimate the fractional cover of
each major landscape unit of interest within image
pixels. The required inputs to LSMM are end-member
reflectances that are to be unmixed. The output is a
fraction image, with coefficients lying between 0 and 1
and summing to one, for each end-member along with
an image containing an error of fit. These fractional
images can be used to constrain additional spectral
analyzes, as input to biophysical and biogeochemical
models (Quarmby et al., 1992; Garcio-Haro et al., 1996;
Asner, 1998; Asner and Lobell, 2000), or simply as a
measure of land cover used to analyze spatial and
temporal changes (Foody et al., 1994; Roberts et al.,
1997; Shanmugam, 2002).

The principal assumption of LSMM is that the
measured reflectance of a pixel is the linear sum of the
reflectance of the mixture components that make up that
pixel. It is also assumed that there is no interaction
between the photons reflected by the individual pixel
components. In order for the LSMM to be applied the
reflectance of that pixel is assumed to be formed as the
sum of the reflectance of the end member types
weighted by their proportions. Mathematically, the

linear spectral mixture modeling framework can be

expressed as
Ri=F, Rl +F,RI, + F,RIg+ E; )
Ry=F R2, +F,R2, + F,R2+ E, )

R3=FyR3, +FR3, +FR3+E; | (3

where, R1, R2 and R3 are the calibrated signal in the
respective bands 1, 2, and 3 or 2, 3, 4 of LISS-1II or TM;
Fm, Fy and F; are the fraction of the pixel covered by
moisture, vegetation, and soil; R1,, RZ2,, and R3,, R1,,
R2, and R3,, and R1;, R2,, and R3; are respective of
reﬂg:ctance of moisture, vegetation and soil in each of
the three spectral bands. E|, E;, and E3 are the error
components in the respective bands of LISS-III or TM.

For the sake of simplification equations (1-3) can be
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written as follows

Rih) = fZlﬂ»Rf(A),- re @
0< Y F<l1 ®)
=

where, R; is the composite reflectance of the mixed
spectrum in band i, F; is the fraction of end-member (j)
in the mixture, Ry is reflectance of that end member in
band i, n is number of end members, € is error in the

sensor band i, 4 is wavelength. The equation 5

constraints the fractions allowed to be between 0 and 1.
Implicit in the above equations is the assumption that
each cover type contributes linearly to pixel reflectance,
and thus nonlinear interactions between end-members
are negligible (Asner and Lobell, 2000). The schematic
of LSMM is shown in Fig. 2.

The identification and selection of reflectance end-
members for equation (4) can be a major problem to the
accurate estimation of the sub-pixel cover fractions by

LSMM. These end-members principally being pure
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Fig. 2. Schematic of linear spectral mixture model (LSMM) showing sequence of operations carried out to derive the
resultant fraction images. The observed vector is decomposed using equation 4 using spectral end-members of

soil, vegetation and moisture.
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reflectance spectra that are derived by a specific target
material with no mixing with any other materials are
usually selected either from spectral libraries built from
field surveys (Asner and Heideobrecht, 2002) or from the
image data (Roberts et al., 1997). The use of reflectance
end-members from spectral libraries is not practical
because they can suffer mainly from spatial and temporal
variability in reflectance properties of cover types. For
instance, large differences in soil moisture over dry and
wet mudflat areas or canopy senescence between the
times of field spectral measurements and image
acquisition can hamper interpretation of cover fraction
images. It is also difficult task to obtain reference end-
member spectra for all cover types, particularly in
mangrove and marsh in swamp where the size of
mangrove canopy in the fringes of lagoon and
inaccessibility nature of swampy areas hinder the field
reflectance measurements. The second approach is more
realistic and derives end-member spectra directly from
the image by extracting reflectance from relatively pure
pixels. There are different methods for selecting spectral
end-members from the image, including principal
component analysis (PCA), pixel purity index (PPI) and
minimum noise fraction (MNF). This study uses spectral
end-members identified from the feature space of red and
near-infrared (NIR) bands and of MNF bands of LISS-TII
and TM images. The image-based end-members are
ideal because they are drawn from the population of data
points to be analyzed in the same scale of measurement
(Roberts et al., 1997). More about selection of end-
members using different methods can be found in
Shanmugam (2002).

4. Results

1) Traditional Hard Classification Methods

ISODATA classification performed on LISS-IIT and

TM images of the three study sites produced broad
wetland cover map for 5, 10, 15 and 20 classes. The
purpose of deriving maps with increased number of
classes is to assess the performance of ISODATA
classification and rate of classification accuracy from
lower number classes to higher number of classes. The
derived classes were assigned and labeled to actual class
based on the knowledge of study area, topographic and
existing coastal ground truth maps. Comparing to
manual delineations from the imagery (hard copy), this
automated method produced maps with more details of
the available wetland cover types (not shown). The
accuracy of these classifications was then assessed
because there is more of a need to assess the reliability
of the results in such a complexity of digital
classification. Thus, the reporting and evaluation of the
comparison of the classified data to verification data
included the generation of an error matrix and statistical
evaluation of that matrix. The error matrix provided a
concise means of examining per class map errors by
including both errors of commission and errors of
omission (Dicks and Lo, 1990; Congalton, 1991). The
accuracy assessment of the ISODATA classification
using error matrix was carried out on threshold images
of 5, 10, 15 and 20 classes by two statistical techniques
the overall accuracy and KAPPA accuracy. The first one
is the simplest descriptive statistic technique which
computes accuracy by dividing the total correct (i.e., the
sum of the major diagonal) by the total number of pixels
in the error matrix, while KAPPA accuracy is the
discrete multivariate technique in which a KHAT
statistic is used as a measure of agreement or accuracy.

The KHAT statistic is computed as

N ; Xii— ; (Xiy *x4)
K= —— — 6)
N?- Z} (Xix 24

where r is the number of rows in the matrix, x;; is the
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number observations in row i and column i, x;, and x
are the marginal totals of row i and column i,
respectively, and N is the total number of observations.
Overall accuracy and KAPPA accuracy were
computed and compared for all class types (Figs. 3a and
b). It was observed that the overall accuracy obtained for
Pitchawaram was 84%, 79%, 78% and 76.5% for 5, 10,
15 and 20 classes respectively. The KAPPA accuracy
was 0.78, 0.74, 0.70, and 0.68 for 5, 10, 15 and 20 class
types respectively. Overall accuracy and KAPPA
accuracy progressively decreased when more number of
information classes were subjected to be derived. The
progressive decrease in classification accuracy towards
increased number of classes is thought to result
essentially from spectral confusion/overlapping between
the following classes: mangrove and non-mangrove
vegetation, degraded mangrove and marsh in swampy
areas, marsh and degraded mangrove, marsh and
mudflat, mudflat and fallow and lagoon and inland
waters. Similar trend was seen in Vedaranniyam study
site but with slightly improved accuracy associated with
these four classifications (Figs. 3a and b). Overall
accuracy was observed to be respective of 86%, 74%,
66.6% and 60.5% for 5, 10, 15 and 20 classes, while
KAPPA accuracy respective of (.80, 0.67, 0.59, and
0.56 for 5, 10, 15 and 20 classes. Misclassification

occurred primarily in mangrove and agricultural
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plantation, mangrove and scrub, marsh in swamp and
wet mudflat as well as within marsh communities, dry
mudflat and reclaimed mudflat, mudflat and fallow, wet
mudflat and saltpan, and sandy areas and dry mudflat. In
contrast with previous cases, ISODATA algorithm
applied on relatively low spatial resolution TM imagery
resulted in maps of 5, 10, 15 and 20 classes with
improved accuracy, indicative of spatially simple and
well distinct cover types associated with Rameswaram
sand dune ecosystem. It showed overall accuracy of
94%, 91.5%, 89.7% and 88.5% for the respective of 5,
10, 15 and 20 classes. A similar tendency in decrease of
classification accuracy was found in KAPPA accuracy
that yielded 0.86, 0.80, 0.76, and 0.74 for the above class
types, corroborating the fact that spectral confusion and
potentially mixed pixels are the principal factors of the
decreased accuracy, particularly for more number of
classes derived from LISS-IIT and TM.

With the aim of deriving classes with improved
accuracy, supervised classification using MLC was
applied to classify the LISS-III and TM imagery into 5,
10, 15 and 20 classes. The main purpose of attempting
MLC among other classification algorithms was that it
has been proven to be the one that obtains the best
results for classification of remotely sensed natural
resource data (Mather, 1987; Shettigara, 1991). Unlike
the automated ISODATA classifier, MLC classification
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Figs. 3a and b. Overall accuracy and KAPPA accuracy for maps of 5, 10, 15 and 20 classes derived from LISS-IIl and TM
image data of the three study sites by ISODATA algorithm.
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started with a number of training samples, which
resulted in various signatures, and followed by class
assignment using decision rule. The ground truth maps
combined with field knowledge and unsupervised
classification results were the basis for selecting accurate
and reliable training samples for performing MLC
classification. Before performing the MLC
classification, the signatures of these training samples
were evaluated by using TD and JM distance statistical
measures applied on three bands LISS-III and five bands
TM image data. Separability analysis indicted that the
selected training sample signatures were appreciably
separable but with a tendency of seemingly decreased
overall minimum separability when number of sample
signatures increased (Figs. 4a-c). The poor separability
for more number of class signatures was noticeable in all

study sites, resulting mainly from spectral similarity/

overlapping among certain wetland categories
mentioned earlier. However, Rameswaram study site
contrasting with Pitchawaram and Vedaranniyam
yielded relatively high separability for all training
sample signatures. Following the performance of
separability analysis, the wetland information classes
were derived from LISS-III and TM images of these
three study sites (shown in Figs. 5a-1) and the accuracy
of these classes was assessed by using overall accuracy
and KAPPA accuracy (using equation 6). Note that sub-
classes obtained are based on density, and wetness and
dryness in the case of marsh, scrub, mudflat, fallow and
sandy area classes and level of turbidity in the case of
waler class.

Figs. 6a and b compare the overall and KAPPA
accuracy for derived wetland classes of the three study

sites by MLC. Overall accuracy in Pitchawaram seemed
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Figs. 4a-c. Overall minimum separability computed for 5, 10, 15 and 20 training samples from LISS-IIl and TM image data
of three study sites using Transformed Divergence (TD) and Jeffries-Matusita (JM) distance measures.
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Figs. 6a and b. Overall accuracy and KAPPA accuracy for maps of 5, 10, 15 and 20 classes derived from LISS-lIl and TM
image data of the three study sites by MLC algorithm.

to be 84%, 79%, 78% and 76.5% for 5, 10, 15 and 20
classes respectively, while KAPPA accuracy was 0.78,
0.74, 0.70, and 0.68 for 5, 10, 15 and 20 classes
respectively. In Vedaranniyam, a fairly improved overall
accuracy for 5, 10, 15 and 20 classes achieved was 86%,
74%, 66.6% and 60.5% respectively. KAPPA accuracy
for these class types was 0.80, 0.67, 0.59 and 0.56
respectively. Rameswaram contrasts with these two sites
in improving overall accuracy and KAPPA accuracy
from 94%~88.5% and 0.86~0.74 for the obtained class
types. It should be noted that although MLC improved
classification accuracy over ISODATA classification,
overall and KAPPA accuracy remained diminished when
more number of wetland classes were subjected to be
extracted from LISS-III and TM image data. Perhaps this
is related to occurrence of number of misclassified pixels,
particularly in areas of mangrove and non-mangrove
vegetation, degraded mangrove and marsh in swainp,
marsh and mudflat, mudflat and fallow, aquaculture
ponds and fallow or mudflat, agricultural plantation and
scrub, sand dunes and fallow, and between coral reefs
(Rameswaram). The misclassification of these pixels
could be elucidated by number of factors, such as
spectral confusion/overlapping, size and inhomogeneity
of training samples (each training sample perhaps
contains certain proportion of soil, vegetation or water),

and spectral mixtures within the image pixels.

Shanmugam (2002) found that statistical characterization
of the above classes used in MLC was not sufficient to
separate from the inadequate IFOV of the LISS-III and
TM, which caused the geographical area subtended by a
pixel to contain a mixture of land cover types. To
overcome these problems, a soft classification based on
linear spectral mixture modeling was performed,
evaluated and compared with the traditional hard
classification methods that labeled the entire pixel as

belonging to one class.

2) Linear Spectral Mixture Modeling
(LSMM)

In order to successfully apply the LSMM, it was very
essential to accurately estimate the spectral end-
members for each component- of soil, vegetation and
moisture. These end-members were determined from the
image through two approaches, based on two-
dimensional scatter plot of red and NIR bands, and
MNF transformation. This study did not use the field-
derived reflectance end-members because they were not
adequate to be used in LSMM and covered only a small
range of cover types actually present in the study site.
Furthermore, the reference end-members from the field
can suffer from temporal variability in reflectance
properties of cover types, causing some error in

estimating the proportions of each cover types in the
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sub-pixel classification analysis (Asner and Heidebrecht,
2002). Fig. 7a allows the identification of three
dominant spectral end-members, soil, vegetation and
moisture, at the extremes of image feature space of red
(LISS-II B2) and NIR (LISS-IIT B3) bands. These end-
members were assumed to represent the purest pixels in
the LISS-II image. An average of 3-7 pixels of these
vertices were calculated and used in LSMM. Cautions
needed to be taken to identify outliers when selecting
these end-members. The Vedranniyam image contrasted
with Pitchavaram image because the scatter plot of
LISS-II B2 and B3 showed rather asymmetrical
patterns in pixel distributions not allowing the selection
of appropriate spectral end-members from the LISS-III
image. Thus, this study needed for MNF transformation
that, applied on LISS-III image data, produced bands
represented by coherent images. The MNF transform is
one of the often-used methods for reducing redundancy
of information between image bands and assisting
selection of accurate and reliable end-members (Rainey
et al., 2003). The spectral end-members were derived
from the scatter plot of MNF B1 and MNF B2 shown in
Fig. 7b. The selection of first two coherent MNF bands
was that they were found to contain 96% of the total

statistical variance in LISS-III image data set. The
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moisture end-member was identified at the top left
vertex while vegetation end-member on the right vertex
of the MNF scatter plot. The soil end-member was
selected from the pixels at the lower right vertex of the
MNF scatter plot (Fig. 7b).

The primary results of LSMM were separate images
for each of the end-members (soil, vegetation and
moisture) containing an estimate of the fraction of that
end-member in each pixel. Assuming the LSMM and
that the spectral signatures of end-members could be
derived from the scatter plots (Figs. 7a and b), the three
fraction images provided information on the abundance
of particnlar wetland cover type in each pixel of the
LISS-IIT and TM image. Figs. 8a-c and Fig. 2 illustrate
the fraction characteristics of the available wetland cover
classes in three study sites. In the fraction images, each
pixel value corresponds to the fraction of soil, vegetation
and moisture in that pixel and the range of fraction

values is between 0 and 1. Pixels with higher abundance

" of the end-member appear to be brighter in the

MNF B2

corresponding fraction image. In the soil fraction,
mudflat and sandy areas have significantly higher values
(0.50~0.70%), while mangroves and marsh have very
low fractions values (darker tone). In the vegetation

fraction, moisture and mudflat and bare soils represented
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Figs. 7aand b. Identification of spectral end-members from the feature space of red and NIR bands and of MNF
B1 and B2 of LISS-iIl image data in Pitchavaram and Vedaranniyam study sites.
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Figs. 8a-c. Fraction images of the three end-members, soil (a1, b1 and ¢1), vegetation (a2, b2 and ¢2), and moisture (a3, b3 and
¢3), obtained by LSMM of LISS-IIl images of Pitchavaram (a) and Vedaranniyam (b and c¢) study sites. The
accompanying errors (not included) for these fractions ranged from 1.2~2 in Pitchavaram, 1~1.7 in Vedaranniyam and
0.8~1.9 in Rameswaram. For validation, the NDVI image was derived and shown in Figs. 8a4, b4 and c4. In soil
fraction images, the brighter areas indicate sand and dry mudflat abundances, while grey tone represents wet
mudflat/swampy areas and turbid waters. In vegetation fraction images, the brighter areas indicate dense and sparse
mangroves abundances while grey tone indicative of marsh and fallow lands. In moisture fraction images, water
appears to be brighter and wet mudflat is indicated by dull grey tone. NDVI images show apparent patterns of
mangroves and marsh vegetation in Pitchavaram and Vedaranniyam study sites. Fraction images for Rameswaram

study site are shown in Fig. 2.

by murky tone have the low fraction values (<0.20%). It
appeared to be large variations between the fraction
values of mangrove (0.62~0.75%) and marsh
(0.40~0.55%) and marsh in swamp (0.23~0.40%),
resulting from crown characteristics (density, leaf area
index, tallness, etc) and possibly reflectance properties
of the background cover types. Overall, marsh
vegetation (grey tone) has lower fraction values than
mangrove and other forest plantations. In the moisture
fraction, moisture has the highest value (brighter tone)

and vegetation and sandy areas the lowest values

(represented by darker tine). Mudflats have some
fraction values of moisture (0.20~0.35%) than sandy
areas (<0.15%). The associated error fraction indicated
that high quality fraction images were obtained and the
results were reliable because the error value for all
wetland cover types was very small (less than 0.03%). It
is evident that the LSMM results were beneficial in the
sense that the method recognized the fact that image
pixels typically contained components of wetland cover
types and provided a more accurate representation of the

soil, vegetation and moisture cover present in the three
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study sites.

This study assessed the reliability of the LSMM
results by comparing model-derived fraction estimates
with field-derived fractional cover estimates as well as
image-derived quantities. In order to compare the
fraction estimates of each continuous field (end-
member) from each of the three study sites, the first step
involved converting the output from the LSMM to the
percent covers of the different end-members. However,
the fractional files contained the estimates of the
fractional coverage associated with each end-member
and the values between 0 and 1 could be interpreted as
percentages for that particular end-member. The fraction
values varied directly with proportional land cover (i.e.,
0-100). Firstly, the LSMM results were compared with
normalized difference vegetation indices (NDVI) and
with field data collected from the Vedaranniyam study
site. Many studies have attempted to correlate vegetation
indices (NDVI) to the fractional coverage of vegetation
and soil (e.g. Carlson and Ripley, 1997; Shanmugam,
2002) because NDVI is an indicator sensitive to
chlorophyll activity and to the density of vegetation
cover (Duncan et al., 1993). This vegetation index was

formulated to substract the effect of reflectance in the
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red band from NIR reflectance (NDVI = (NIR-Red)/
(NIR+Red). The NDVI value in a given pixel ranges
between 0 and 1 where O represents 0% vegetation,
while 1 represents 100% vegetation in that pixel.
Therefore, a vegetated surface yielded high values
because of their high NIR reflectance and low red
reflectance (see Fig. 12b), bare soil and sandy areas
resulted in values closer to O due to nearly similar
reflectance in the two bands, water having larger red
reflectance than NIR yielded some time negative values.
The change in NDVI values in vegetative areas depends
on their phonological cycle (Figs. 8a4, b4 and c4).

Fig. 9a shows the correlation between the proportion
of vegetation fractions derived from LSMM and NDVI
in three study sites. It appears that vegetation fraction
values increase with increasing NDVI values. It exhibits
a positive correlation between vegetation fraction with
NDVI, with the squared correlation coefficient (%)
respective of (.92, 0.95 and 0.96 for Pitchavaram,
Vedaranniyam and Rameswaram. These values are
higher than that (% = 0.602) reported by McGwire et al
(2000) when correlating NDVI with % green cover for
Providence Bajadas area, California using hyperspectral

image data. The highly heterogencous and complex
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Figs. 9a and b. Validation of LSMM results in the three wetland study sites. (a) Vegetation fraction correlates very well with
NDVI fractions (r2 = 0.92 in Pichavaram; r? = 0.95 in Vedaranniyam; r2 = 0.96 in Rameswaram). (b) Soil
fraction correlates poorly with NDVI (i.e., r? = 0.13 in Pitchavaram; r? = 0.39 in Vedaranniyam; r° = 0.53 in

Rameswaram).
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nature of Pitchavaram mangroves and marsh, associated
with Vellar-Coleroon estuarine complex, resulted in
relatively poor correlation between NDVI and
vegetation fraction than Vedaranniyan wetland site. The
highly dispersed marsh vegetation in Vedaranniyam
mudflats underestimated the vegetation fraction in LISS-
III image and resulted in poor correlation between
vegetation fraction and NDVI than Rameswaram site,
where the vegetation fraction from LSMM tended to
have one-to-one correlation with NDVI owing to
distinct patches of cover types. While NDVI is
correlated with the vegetation fraction, considerable
scatter is present in each of the three study sites due to
variable background reflectance (i.e., soil and moisture)
and differences in the structure of the vegetation
canopies between plots. In contrast, Fig. 9b shows the
negative relation between NDVI and soil fraction
estimates for all three study sites. The 1> for the NDVI
and soil fraction relation was 0.13, 0.39 and 0.53 for
Pitchavaram, Vedaranniyam and Rameswaram
respectively. A positive relationship between NDVI and
the vegetation fraction, and a negative relationship
between NDVI and the soil fraction indicate the
correctness of the LSMM and the reliability of the
derived sub-pixel proportions of vegetation and soil.

The soil and moisture fraction images derived from
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LSMM were also compared with field data collected
from the discrete locations around Muthupet mudfiat
and lagoonal areas in the western part of the
Vedaranniyam study site. Fig. 10a shows the
relationship between actual moisture fraction in the field
and computed moisture fraction by LSMM. It appears
that the computed moisture fractions by LSMM were
substantially overestimated by about 10-24% at first 7
stations (excluding 4 and 5), while it was nearly
consistent with the actual moisture fraction, with an
overestimation by about 5-10% at the remaining
stations. This overestimation occurred due to the
significantly large IFOV of the sensor covering a highly
varied surface moisture cover at these stations.
However, overall accuracy of LSMM for the estimates
of moisture fraction was found to be 92%. In contrast,
the soil fractions estimated by LSMM appeared to be
lower by about 10~32% than the actual soil fractions
from the field (Fig. 10b). When the actual soil fraction
did not account for the imperceptible surface green
matter in the field, the presence of microphytobenthos
attenuated the spectral signal of the mud resulting in
underestimation of soil abundance at all stations, where'
the vegetation abundance increased by about 10~25%.
Examination of the associated error image revealed that

the LSMM error increased to about 2% in the fine-
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Figs. 10a and b. Comparison of actual and computed fractions of moisture and soil end-members in Vedaranniyam study
site. Soil moisture was determined at 16 discrete locations in the western part of Vedaranniyam wetland.
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grained mudflat areas, which were covered by
microphytobenthos. The overall accuracy can be said to
be about 96% for the estimates of soil fraction by
LSMM.

3) Comparison of the Results of LSMM
and MLC Classification

In order to make results of per-pixel classification
(MLC) comparable to the LSMM qualitatively and
quantitatively, the areas of different wetland classes
depicted from MLC were used in LSMM to derive
fraction images of soil, vegetation, moisture and
accompanying error for each class. The means of these
fractions computed were taken to explain the difference
between the results of per-pixel and sub-pixel
classifications. Fig. 11 gives an example illustrating the
mean fraction characteristics of some typical wetland
classes derived from per-pixel classification (MLC) in
the Pitchavaram study site. It is apparent that the dense
mangrove (DM) class consisted of 68.5% vegetation,
16% soil, 14% moisture and 1.4% error, while degraded
mangrove (DGM) class embraced 45% moisture, 28%

100 -
0 [ —8— DM
90 - —o— DGM
~ 80 - —e—MA
* —%—WMF
= 704 8 DMF
4
8 60 -
— 504
g
5 40
‘g 30
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Fig. 11. Mean fractional cover percentage obtained
from LSMM for different wetland cover types
derived from MLC algorithm using LISS-IH
image data of Pitchavaram study site. DM -
dense mangrove, DGM - degraded
mangrove, MA - marsh, WMF - wet mudflat,
DMF - dry mudfiat.

soil, 25% vegetation and 2% error. Similarly, marsh
vegetation class depicted from MLC is shown to contain
47% vegetation, 33% soil, 18% moisture and 2% error.
In wet mudflat (WMF) class, 47% soil, 37% moisture,
15% vegetation and 1% error could constitute the WM
class, while 70% soil, 18.8% moisture, 10% vegetation
and 1.2% error accompanied with the dry mudflat class
(DMF) depicted from MLC classification. The
associated error fractions demonstrate that the error was
significantly low for all class types, but slightly high
errors for degraded mangrove and marsh classes, which
underlie the fact that simplifying assumptions were
made to the end-member extraction and to the LSMM
algorithm due to the spectral limitation of the sensor and
to ease the procedure could elucidate part of such high
errors and variations in the error fractions obtained for
these class types.

On the other hand, a 750 m transect was established
in the western part of Vedaranniyam wetland
(Muthupet), running from the fringes of the lagoon
(where high density of mangroves could be observed) to
mudflat. This transect location is indicated by an arrow
in Fig. 8¢c2 and transect is referred to as mangrove-
mudflat (MM) transect. Several measurements were
made along this transect, coinciding with the flood tide
and LISS-III over pass on 19-07-2000. The sparse
mangrove areas just behind the dense mangroves on the
fringes of lagoon were partially covered by turbid waters
of the flood tides. The reflectance properties of lagoon
waters, dense and sparse mangroves and bare soils on
the mudflat were measured at number of stations along
the MM transect, using a field ground truth
spectroradiometer (GTR). The GTR collected upwelling
radiance measurements in the spectral range
corresponding to TM bands (first four bands) were
converted to reflectance using a spectralon calibration
panel. In order to compare the field measurements with
LSMM, the reflectance values were converted to

percentile reflectance. Fig. 12a displays turbid water
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spectra collected from the lagoon beside the start of the
MM transect, indicating that the reflectance percentage
at GTR B2 increases with increasing suspended
sediment (SS) concentrations 14~58 g/m3. Because of
the high SS concentration (58 g/m’) in shallow waters
occupying sparse mangroves, the GTR reflectance
notably increased at all bands compared to lagoon water
reflectances (top spectrum in Fig. 12a). Fig. 12b shows
field spectra collected over dense and sparse mangroves
and marsh vegetation. Note that the reflectance
percentage at GTR B4 (corresponding to TM B4)

progressively increased from sparse to dense

mangroves. The sparse mangroves have low reflectance
percentile values due to canopy structure (with relatively
low pigment composition and leaf area index) associated
with turbid waters. Similarly, reflectance spectra
meastred in wet and dry mudflats are shown in Fig. 12¢,
where the reflectance percentile values appear to have
increased with increasing wavelength (GTR bands) and
decreasing organic matter and moisture content. These
two parameters together with surface sediment
properties determine the surface reflectance
characteristics of mudflats (Thomson et al., 1998;

Rainey et al., 2003). Consistent with previous studies,

80
70 A
60 1
50 ~
40 ~
30 A

DM

16
14
< 12 HT
o 10 1
§ 8
3 6
T 4
e LT
27 (@)
0 T T T
B1 B2 B3 B4
GTR Bands
40
35 LMandLO

Reflectance (%)
RN 8 N W

B1 B2 B3
GTR Bands

Reflectance (%)

NIR reflectance (%)

20 1
10 -

SM
(b)

B1

B2 B3 B4
GTR Bands

40
35 4
30 -
25 1
20 -
15 4
10 A
5_

LM and LO

Y

0

T T

20 30 40

Red reflectance (%)

Figs. 12a-d. Field reflectance spectra of turbid waters, mangroves and soils (mudflat) measured with GTR instrument
along the 750 m mangrove-mudflat transect (indicated by an arrow in Fig. 8¢2) in the western part of
Vedaranniyam wetland. LT - low turbid, HT - high turbid, SM - sparse mangrove, DM - dense mangrove, HM -
high moisture, HO - high organic matter, LM - low moisture, LO - low organic matter, LSF - low soil fraction,
HSF - high soil fraction. SS concentration determined was 14 ~ 58 g/m® (a), while the determined moisture
content and organic matter varied from 5.4% ~ 53.5% and 0.2% ~ 4.3% respectively (¢ and d). The actual soil
fraction ranged from 17% ~ 69% (c). '
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the scatter plot of GTR B3 (red) and GTR B4 (NIR) in
Fig. 12d demonstrates a good linear relationship
between these two bands reflectance properties, which
increased monotonically with decreasing organic matter
(0.2~4.3) and moisture content (5.4~53.5) determined in
the field.

Fig. 13 compares the results of LSMM with MLC on
LISS-III image data along the 750 m mangrove-mudflat
(MM) transect in the western part of Vedaranniyam
study site. The horizontal profile reveals that MLC
produced a single map containing broad wetland cover
types that included dense and sparse mangroves and
mudflat along the 750 m MM transect area, while the
LSMM was able to generate more accurate areal
estimates of the end-end-member classes along this
transect, matching closer to the field estimates as shown
in Figs. 12a-c. Unlike MLC, the LSMM did not rely on
the identification of pixel clusters with similar
reflectance spectra, but rather it was able to consider
each pixel individually and assessed the presence and
proportion of selected end-members. The vegetation
fraction produced by LSMM demonstrates that the sub-
pixel dense mangrove cover ranged from 55~87%

within the 200 m MM transect area, followed by a
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Fig. 13. Comparison of the results from LSMM and
MLC applied to LISS-IIl image data along the
750 m mangrove-mudflat (MM) transect,
which runs from the fringes of the mangrove
to mudflats near Muthupet lagoon in the
western part of Vedaranniyam study site.

dramatic decrease in vegetation fraction representing
20~55% of sparse mangroves standing in turbid water of
flood tides between 200 and 500 m transect area.
Attenuation by both sparse mangroves and turbid waters
governed the spectral reflectance characteristics of this
region (Figs. 12a and b). The vegetation fraction further
decreased by about 20~3% towards mudflats that were
covered partly by the patches of microphytobenthos. On
the contrary, soil abundance was significantly low
(6~34%) within 375m MM transect area (where the
dense and sparse mangrove areas appeared to diminish
the proportional soil cover) and increased rapidly by
about 34~78% towards mudflat that attenuated grater
than other cover types. The estimates of these two
fractional cover could determine the moisture fraction
that was substantially low in both dense mangroves and
mudflat areas, but tending to increase by about 23~47%
in the sparse mangrove areas covered with turbid waters.
The error fraction along this transect appeared to be
significantly less than 2%. The comparative results
indicate the efficiency of the recently evolved LSMM
method that proved to maintain higher accuracy in
classification and provided a more realistic
representation of the coastal wetland landscape as it
estimated continuous fields of wetland cover, as
opposed to the patchy and discrete nature of traditional

per-pixel classification techniques.

5. Discussion and Conclusions

Coastal wetland mapping and monitoring is crucial
for preserving valuable wetland ecosystems. Thus, the
development of remote sensing techniques for wetland
monitoring is urgent. A special emphasis in this study
was placed on the analysis of IRS 1C/1D LISS-IIT and
Landsat-5 TM imageries, because they are higher
resolution data and the most commonly used imageries

when referring to previous studies that employed
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classification and sub-pixel mixture analysis (Andrew,
2000; Shanmugam, 2002). This study compared the
LSMM with traditional hard classification methods such
as ISODATA and MLC algorithms applied to IRS-
1C/1D LISS-III and Landsat-5 TM image data in three
different coastal wetland sites of southern India. The
result showed that ISODATA and MLC algorithms
provided summary information about various coastal
wetland features in a relatively quick manner and
seemed to be well suited to map wetland cover types in
an efficient manner compared to the manual delineation
technique using FCC image. However, the accuracy
analysis based on overall and KAPPA accuracy
measures suggested that classification accuracy
appeared to be progressively decreased when more
number of classes were subjected to be derived from
LISS-IT and TM image data by ISODATA and MLC
algorithms, although dominant cover types (few classes)
in each pixel were easily identified without the
classification being overly hard. In real situations, it was
not often that such pixels contained just one dominant
class. To handle sub-pixel mixture problems, LSMM
was therefore used to determine proportional estimates
of wetland cover in each pixel of the imagery.

The LSMM is a physically-based image analysis
model that supports repeatable and accurate extraction
of quantitative sub-pixel information. The main
advantage of application of this model is that wetland
cover types occupying from a whole to a small fraction
of an image pixel could be detected. Unlike supervised
and unsupervised image classifications based on ML.C
and ISODATA, the LSMM did not rely on the detection
or identification of pixel clusters with similar reflectance
spectra. Rather, it was able to consider each pixel
individually and assess the presence and proportion of
select end-members. LSMM produced fraction images
that were pixel-by-pixel measures of the percent
composition for each end-member in the linear spectral

mixture modeling. Fraction images produced with

LSMM appeared to be an effective means of mapping
mangrove and marsh vegetation and other associated
wetland cover types in such highly fragile ecosystems.
The findings showed that the LSMM was able to
generate more accurate areal estimates of the end-
member classes, matching closer to the field data
estimates. Since supervised and unsupervised methods
were based on predefined classification schemes,
classifying entire pixels often produced too high or low
estimates of wetland cover classes due to the inability to
distinguish sub-pixel covers. In contrast, the LSMM
proved to maintain higher accuracy in classification and
provided a more Tealistic representation of the landscape
as it estimated continuous fields of wetland cover, as
opposed to the patchy and discrete nature of traditional
per-pixel classification techniques.

Results compliment the finding of a small number of
previous studies, that support the use of LSMM in
characterizing coastal wetland cover composition and
areal estimates, due to its ability to produce fractions
representative of sub-pixel components directly related
to wetland cover types and relative area. Higher
accuracy in estimating wetland composition and
proportional cover provided higher quality data for use
in other application studies and input into biophysical,
biogeochemical and other ecosystem models. Although
the application of the LSMM offers the advantages of
simplicity and ability to apply the model over large areas
using reference reflectance end-members data, the
model might also make overly simplified assumptions.
For example, in LSMM, a pixel is represented by two or
more cover types that occur in patches that large relative
to the sensor’s IFOV and it is assumed that proportions
of the end-members can be estimated because mixing
occurs in a linear manner. However, linear mixing does
not apply to cases where the composite occurs at a scale
that is fine relative to the IFOV of the sensor (Zhu and
Evans, 1994). Since, mixing would occur before

radiation reaches the sensor, the components of the
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composite would not be able to be estimated using the
LSMM approach described in the previous section.
However, it should be noted that nonlinear mixing is
likely only to occur when component surfaces arise in
highly dispersed patterns. Owing to the nature of the
wetland and scene characteristics, the LSMM has been

judged to be adequate for this purpose of the study.
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