• 제목/요약/키워드: Implicit Integration

검색결과 210건 처리시간 0.011초

점소성 구성식의 적분에 미치는 선형화 방법의 영향 (Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션 (Explicit time integration algorithm for fully flexible cell simulation)

  • 박시동;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

조인트 좌표계를 이용한 부분시스템 합성방법의 내재적 적분기법 (An Implicit Integration Method for Joint Coordinate Subsystem Synthesis Method)

  • 조준연;김명호;김성수
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.437-442
    • /
    • 2012
  • 본 논문에서는 효율적인 다물체 시스템의 동역학 해석을 위해 조인트 좌표계 기반의 부분시스템 합성방법을 위한 내재적 적분기법을 개발하였다. 부분시스템 합성방법의 내재적 적분기법을 검증하기 위해, 동일 구조를 갖는 6 개의 독립적인 현가 부분시스템으로 이루어진 무인 로봇 차량에 적용하였다. 내재적 적분기법의 복잡한 시스템 자코비언을 효율적으로 생성하기 위해 기호연산법을 도입하였다. 제안한 방법의 검증을 위해 험지주행 시뮬레이션을 수행하였으며, 일반적인 내재적 적분기법 모델과 그 결과를 비교하였다. 또한 효율성을 확인하기 위해 해석 시간을 비교하였다.

실시간 차량 시뮬레이터 개발을 위한 암시적 적분기법을 이용한 병렬처리 알고리즘에 관한 연구 (Study on the parallel processing algorithms with implicit integration method for real-time vehicle simulator development)

  • 박민영;이정근;배대성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.497-500
    • /
    • 1995
  • In this paper, a program for real time simulation of a vehicle is developed. The program uses relative coordinates and BEF(Backward Difference Formula) numerical integration method. Numerical tests showed that the proposed implicit method is more stable in carring out the numerical integration for vehicl dynamics than the explicit method. Hardware requirements for real time simulation are suggested. Algorithms of parallel processing is developed with DSP (digital signal processor).

  • PDF

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

논문 : 헬리콥터 비행 시뮬레이션을 위한 로터운동방정식 유도 (Papers : Implicit Formulation of Rotor Aeromechanic Equations for Helicopter Flight Simulation)

  • 김창주
    • 한국항공우주학회지
    • /
    • 제30권3호
    • /
    • pp.8-16
    • /
    • 2002
  • 헬리콥터 비행 시뮬레이션을 위한 로터 운동방정식을 implicit formulation 형태로 유도하였다. 좌표계 사이의 상대운동을 고려한 일반화된 벡터 kinematics 를 유도하고 이를 적용하여 브레이드 임의 위치 에서 관성속도 및 관성가속도를 구하였다. 유도된 속도 및 가속도 벡터를 이용하여 플래핑, 리드래그 및 토오크 방정식 등을 implicit form으로 유도하였다. 브레이드 스팬에 따른 공간 적분 방법을 살펴보고, 다양한 힌지형상 및 힌지배열 순서에 관계없이 응용영역을 확장할 수 있음을 밝혔다. DAE(Differential Algebraic Equation) 형태를 갖는 본 연구의 결과식을 이용하여 동특성 계산을 위한 시간적분법을 검토하였다.

분할 적분 기법을 적용한 N-sigma-T 분자동역학 전산모사 (A Splitting Time Integrator for Fully Flexible Cell Molecular Dynamics)

  • 박시동;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.826-832
    • /
    • 2007
  • Fully flexible cell preserves Hamiltonian in structure so that the symplectic time integrator is applicable to the equations of motion. In the direct formulation of fully flexible cell N-Sigma-T ensemble, a generalized leapfrog time integration (GLF) is applicable for fully flexible cell simulation, but the equations of motion by GLF has structure of implicit algorithm. In this paper, the time integration formula is derived for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term. Thus the simple and completely explicit recursion formula was obtained. We compare the performance and the result of present splitting time integration with those of the implicit generalized leapfrog time integration.

일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화 (Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation)

  • 오세붕;이승래
    • 한국지반공학회지:지반
    • /
    • 제12권4호
    • /
    • pp.145-156
    • /
    • 1996
  • 연약한 지반의 거동을 적절하게 표현할 수 있는 일반 등방경화 규칙에 근거한 비등방경화 구성모델을 비선형 유한요소해석에 적용하기 위하여 내재적인 응력적분기법을 정식화하였다. 정식화된 응력적분기법은 비선형 해석시에 필요한 응력을 일반 사다리꼴규칙에 의하여 내재적으로 적분하고 응력변형률 접선계수를 비선형 해법에 일관되게 도출할 수 있다. 이러한 알고리즘을 통하여 해의 정확도 및 수렴도를 확보할 수 있으므로, 비등방경화 구성 관계를 적용한 비선형 해석을 정확하고 효율적으로 수행할 수 있는 토대를 구축할 수 있었다.

  • PDF

유사동적 실험을 위한 Implicit a-C Method에 관한 연구 (Research of Implicit a-C Method for Pseudo-Dynamic Test)

  • 박종협
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.151-158
    • /
    • 2000
  • The use of unconditionally stable implicit time integration techniques for pseudo-dynamic tests has been recently proposed and advanced by several researchers such as Thewalt and Mahin Nakashima and Shing. The developed implicit algorithms are based on a-Method of Hugest et al. In this paper a concise summary and explanation of implicit method for Pseudo dynamic test is presented. Especially The a-C method developed by shing at al. has been in-depth evaluated for this study. Important parameters of the a-C method have been analyzed by the simulation test.

  • PDF