Browse > Article
http://dx.doi.org/10.3795/KSME-A.2007.31.8.826

A Splitting Time Integrator for Fully Flexible Cell Molecular Dynamics  

Park, Shi-Dong (서울대학교 기계항공공학부)
Cho, Maeng-Hyo (서울대학교 기계항공공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.31, no.8, 2007 , pp. 826-832 More about this Journal
Abstract
Fully flexible cell preserves Hamiltonian in structure so that the symplectic time integrator is applicable to the equations of motion. In the direct formulation of fully flexible cell N-Sigma-T ensemble, a generalized leapfrog time integration (GLF) is applicable for fully flexible cell simulation, but the equations of motion by GLF has structure of implicit algorithm. In this paper, the time integration formula is derived for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term. Thus the simple and completely explicit recursion formula was obtained. We compare the performance and the result of present splitting time integration with those of the implicit generalized leapfrog time integration.
Keywords
explicit Integration; Splitting Time Integrator; Symplectic Integration; Molecular Dynamics; Flexible Cell;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Hernandez, E., 2001, 'Metric-Tensor Flexible-Cell Algorithm for Isothernal-Isobaric Molecular Dynamics Simulation,' J. Chem. phys., Vol. 115, No. 22,pp.10282-10290   DOI   ScienceOn
2 Choi, K. and Cho, M., 2006, 'Fully Flexible Unit Cell Simulation with Recursive Thermostat Chains,' J. Chem. Phys., Vol. 125, pp. 184105   DOI   ScienceOn
3 Nose, S., 1984, 'A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods,' J. Chem. Phys., Vol. 81, pp. 410-440   DOI
4 Shen, T.D., Koch, C.C., Tsui, T.Y. and Pharr, G.M., 1995, 'On the Elastic Moduli of Nanocrystalline Fe, Cu, Ni, and Cu Ni Alloys Prepared by Mechanical Milling/Alloying,' J. Mater. Res., Vol. 10, p.2892   DOI   ScienceOn
5 Park, S. and Cho, S., 2004, 'Molecular Dynamics Simulation of Adhesive Friction of Silicon Aspertity,' Transactions of KSME A, Vol. 28, No.5, pp.547-553   과학기술학회마을   DOI   ScienceOn
6 Souza, I. and Martins, J. L., 1997, 'Metric Tensor as the Dynamical Variable for Variable-Cell-Shape Molecular Dynamics,' Phys. Rev. B, Vol. 55, pp. 8733-8742   DOI   ScienceOn
7 Bond, S. D., Leimkuhler, B. J. and Laird, B. B., 1999, 'The Nose-Poincare Method for Constant Temperature Molecular Dynamics,' J. Comput. Phys., Vol. 151, pp. 114-134   DOI   ScienceOn
8 Nose, S., 2000, 'An Improved Symplectic Integrator for Nose-Poincare Thermostat,' Journal of the Physical Society of Japan., Vol. 70, No.1, pp. 75-77   DOI   ScienceOn
9 McLachlan, R. I. and Quispel, G. R. W., 2002, 'Splitting methods,' Acta Numerica , pp. 341-434
10 Goldstein, Poole and Safko, 2002, Classical Mechanics, Addison Wesley, pp. 341-434
11 Frenkel, D. and Srnit, B., 1996, Understanding Molecular Simulation, Academic Press
12 Nose, S., 2002, 'A Molecular-Dynamics Method for Simulations in the Canonical Ensemble,' Mol. Phys., Vol. 10, No.1, pp. 191-198
13 Hoover, W. G., 1985, 'Canonical Dynamics: Equilibrium Phase-Space Distributions,' Phys. Rev. A, Vol. 31, pp. 1695-1697   DOI
14 Meyers, M. A. and Chawla, K. K., 1999, 'Mechanical Behavior of Materials,' Prentice Hall, p. 87
15 Park, S, 2003, 'Applications of Molecular Dynamics Simulation,' Journal of the KSME, Vol.43, No.3, pp.49-57