• Title/Summary/Keyword: Implantable

Search Result 316, Processing Time 0.03 seconds

ICT Trend Analysis Based on Research Papers and Patents (논문 및 특허 기반의 ICT 동향 분석 연구)

  • Son, Yeonbin;Kim, Solha;Choi, Yerim
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.1-18
    • /
    • 2021
  • ICT is the main driving force of Korea's economic growth. Korea has the world's best ICT competitiveness, and several policies are being implemented to maintain it. However, for successful policy implementation, it is crucial to understand ICT trends accurately. Therefore, this study analyzes the trends of 18 core technologies in the ICT field. In particular, the degree of scientific development and commercialization by technology are investigated through research paper analysis and patent analysis, respectively. Then, the trends shown by document type are compared based on the two analysis results. As a result, artificial intelligence and virtual reality are at the stage where commercialization is actively taking place after scientific development, and at the same time, since research is being conducted, it is expected to develop continuously. On the other hand, quantum computer and implantable device are in the basic research stage. It is necessary to understand the current research status and determine the direction of future support. The results of the ICT trend analysis conducted in this study can be used as a criterion for determining the future direction of Korean policy.

Adhesion of Human Osteoblasts Cell on CrN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong-Hung;Kim, Sun-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.203-207
    • /
    • 2009
  • Interaction between human osteoblast (hFOB 1.19) and CrN films was conducted in vitro. CrN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). CrN films, glass substrates and TiN films were cultured with human osteoblasts for 48 and 72 hours. Actin stress fiber patterns and cell adhesion of osteoblasts were found less organized and weak on CrN films compared to those on the glass substrates and the TiN films. Human osteoblasts also showed less proliferation and less distributed microtubule on CrN films compared to those on glass substrates and TiN films. Focal contact adhesion was not observed in the cells cultured on CrN films, whereas focal contact adhesion was observed well in the cells cultured on glass substrates and TiN films. As a result, the CrN film is a potential candidate as a surface coating to be used for implantable devices which requires minimal cellular adhesion.

An Implantable Micro Check-Valve with A Pre-Stressed Membrane (초기 음력이 내재된 박막을 갖는 인체삽입용 마이크로 체크 밸브)

  • Lee, S.W.;Kim, M.S.;Yoon, H.J.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.56-58
    • /
    • 2001
  • 본 논문은 수두증 환자의 체내에 삽입하는 파릴린 막체크 밸브의 제작과 시험에 관한 것이다. 파릴린 막 체크밸브는 세 가지 특징을 가지고 있다. 박막의 초기 인장응력에 따라 특정한 압력 이상에서 밸브가 열리고, 막과 밸브 입구의 크기에 따라 순방향과 역방향 특성을 서로 다르게 하며, 앤티사이폰 역할을 한다. 파릴린 체크 밸브는 상부 기판과 하부 기판으로 구성되어 있다. 하부 기판은 입구, 출구, 유로, 두 개의 완충챔버로 이루어져 있고, 상부 기판은 입구 박막과 두 개의 완충 챔버 박막으로 이루어져 있다. 하부 기판에는 밸브 구멍 주위에 밸브 시트를 두어 두 기판을 조립할 때 밸브 시트가 막을 변형시키면서 박막에 초기 인장 응력을 주도록 되어 있다. 또, 하부 기판에 특정한 각을 가진 유로 및 완충 챔버를 형성하여 역류 발생시 유체를 완충 챔버 쪽으로 흐르게 한다. 유한요소법(FEM)을 이용하여 박막과 밸브 입구의 크기, 박막의 두께 등을 변화시켜가며 박막의 응력과 변형을 해석하였고 해석 결과로부터 밸브 시트의 높이를 결정하였다. 마이크로머시닝으로 두 기판을 제작하고 조립한 후, 순방향과 역방향의 압력에 대한 유량을 측정하여 파릴린 체크 밸브의 특성을 시험하였다.

  • PDF

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate (유연한 CNT Nanosheet 기판을 이용한 생체연료전지 Roll 제작)

  • Sung, Jungwoo;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.388-391
    • /
    • 2014
  • The most promising application of the biofuel cells is implantable devices, so the biofuel cells should have an appropriate shape for the vascular vessel. We demonstrated the biofuel cell roll for using in tubes. MWNTs were aggregated by vacuum filtration on a nitrocellulose membrane filter, which was biocompatible and flexible. The MWNT aggregated nitrocellulose membrane used the electrodes of the biofuel cells because it was conductive as well as nanostuructured. Then, the membrane was rolled into the roll shape. The maximum power density of the biofuel cell roll was $7.9{\mu}W/cm^2$ at 153mV and 50 mM glucose. Also, the power density is expected to increase in its practical application if there is flow in the tube, which makes the transportation of fuel easy. The biofuel cell roll contacts with the wall of the tube, so flow in the tube does not disturb. Also, the biofuel cell roll has multi-layers offering more electroactive area.

A Research on the Reliability Assessment and Improvement of Spinal Cage using by the Failure Mechanism by the Impulse (충격량에 의한 고장메커니즘을 활용한 추간체유합보형재의 신뢰성 평가 방법 및 개선에 관한 연구)

  • Yu, Woo-Jin;Lee, Yong-Yoon;Heo, Sung-Yong;Ham, Jung-Koel
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • The Spinal cage is the cage-shaped implantable medical device used to treat structural abnormalities caused by degenerative intervertebral disks. In order to secure enough space to provide the mechanical stability and the intervertebral fusion, after removing the intervertebral disc, the Spinal cage is transplanted between the intervertebral space. A hammer is used to push the spinal cage into a narrow space during the spinal cage transplant surgery. Due to the impact and pressure, damage occurs frequently on the spinal cage. In this study, a test model is constructed to measure the value of impulse generally applied on the Spinal cage. The figures of internal impulse before and after the improvement of the Spinal cage are then compared to suggest direction to improve the reliability of the spinal cage.

Development of multilayer actuators with single crystals for implantable middle ears (압전 단결정 재료를 이용한 인공중이용 적층형 액츄에이터의 개발)

  • Seon J. H.;Lee S. S.;Roh Y. R.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.315-318
    • /
    • 2004
  • 이식형 인공중이에 있어 그 특성은 트랜스듀서의 성능에 따라 크게 좌우된다. 따라서 성능이 우수한 인공중이 제작을 위해서는 트랜스듀서의 주파수 특성 및 구동 성능이 우수해야 하고 인체 내 이식을 위해서는 그 크기가 작아야 한다. 본 연구에서는 인공중이용 소형 트랜스듀서로서 단결정 압전 재료인 PMN-PT를 이용한 적층형 액츄에이터를 제안하였다. 또한 제안된 모델을 두께 0.2mm를 갖는 $1mm{\times}1mm$ 크기의 PMN-PT 시편을 14층으로 쌓아 2.8mm 두께로 제작하였고, 이때 절연층으로 P.R을 사용하였다. 제작된 트랜스듀서의 성능은 Impedance Spectrum, 구동변위 측정 및 구동력의 계산을 통해 평가하였다. 이를 통해 PMN-PT를 재료로 사용한 적층형 액츄에이터의 성능이 기존의 PZT를 재료로 사용한 Bimorph 액츄에이터보다 훨씬 뛰어날 뿐만 아니라 청각 장애가 심한 고도난청자들에게 적용이 가능한 이식형 인공중이용 트랜스듀서로서 충분한 성능을 가지고 있음을 입증하였다.

  • PDF

Implementation of Passive Telemetry RF Sensor System Using Unscented Kalman Filter Algorithm (Unscented Kalman Filter를 이용한 원격 RF 센서 시스템 구현)

  • Kim, Kyung-Yup;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1861-1868
    • /
    • 2008
  • In this paper, Passive Telemerty RF Sensor System using Unscented Kalman Filter algorithm(UKF) is proposed. General Passive Telemerty RF Sensor System means that it should be "wireless", "implantable" and "batterless". Conventional Passive Telemerty RF Sensor System adopts Integrated Circuit type, but there are defects like complexity of structure and limit of large power consumption in some cases. In order to overcome these kinds of faults, Passive Telemetry RF Sensor System based on inductive coupling principle is proposed in this paper. Because passive components R, L, C have stray parameters in the range of high frequency such as about 200[KHz] used in this paper, Passive Telemetry RF Sensor System considering stray parameters has to be derived for accurate model identification. Proposed Passive Telemetry RF Sensor System is simple because it consists of R, L and C and measures the change of environment like pressure and humidity in the type of capacitive value. This system adopted UKF algorithm for estimation of this capacitive parameter included in nonlinear system like Passive Telemetry RF Sensor System. For the purpose of obtaining learning data pairs for UKF Algorithm, Phase Difference Detector and Amplitude Detector are proposed respectively which make it possible to get amplitude and phase between input and output voltage. Finally, it is verified that capacitive parameter of proposed Passive Telemetry RF Sensor System using UKF algorithm can be estimated in noisy environment efficiently.

The Supplementary Use of BoneSource® in the Surgical Correction of Craniosynostosis (두개골 조기유합증의 수술적 교정에서 BoneSource®의 보조적 사용)

  • Lim, Jee Hyun;Song, Jin Kyung;Yoo, Gyeol;Byeon, Jun Hee
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.474-478
    • /
    • 2005
  • Craniosynostosis is a congenital anomaly characterized by premature closure of cranial sutures. Surgical intervention should be performed during infancy. However, surgical correction of craniosynostosis remains bone defect and secondary angle occasionally. Currently, publications investigating solutions to bone defect and secondary angle created by cranioplasty are getting much interest. We have used $BoneSource^{(R)}$ which is relatively safe as an implantable substance for providing solutions for this problem. From June 2002 to January 2004, five children with craniosynostosis underwent frontocalvarial contouring using $BoneSource^{(R)}$ and concurrent cranial vault remodeling. The patient ages ranged from 8.0 months to 4.9 years(mean, 2.5 years). The quantity of $BoneSource^{(R)}$ implanted ranged from 10 to 25g, with a mean of 13g. This paper presents the first series of children treated with $BoneSource^{(R)}$ for frontocalvarial contouring in the surgical correction of craniosynostosis. No patients experienced any complications. Our results shows excellent retention of contour without causing asymmetry or irregularity. No visible evidence of interference with craniofacial growth were observed. Through our experiences, $BoneSource^{(R)}$ is found to be very useful for frontocalvarial contouring in children undergoing correction of craniosynostosis.

A Study of Interventricular volume Pressure in a Totally Implantable Electromechanical Artificial heart (완전 이식형 전기기계식 인공심장 심실간 공간 압력 파형에 관한 연구)

  • Jo, Yung-Ho;Choi, Won-Woo;Park, Seong-Keun;Lee, Dong-Joon;Choi, Jae-Soon;Kim, Hee-Chan;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.222-226
    • /
    • 1995
  • 인공심장에서의 박출량제어는 전부하에 따른 심박출균형, 심실내 완전충만과 완전구출을 구현하는데 그 목적이 있다. 본 논문에서는 인공심장 내부의 심실간 공간 압력파형을 심박출량의 제어에 활용하였다. 이를 위해서는 심실간 공간의 압력파형을 심실 유입부와 유출부의 혈류량에 대한 정보, 이동작동기의 위치신호와 동기시켜 해석하는 것이 필요하다. 이러한 압력파형의 해석을 바탕으로, 심실간 공간의 음압 크기로 좌,우 심방압을 추정하고 작동기의 좌,우 수축기때 심실간 공간의 음압크기를 비슷하게 유지하도록 작동거리를 제어하면 좌우 심박출 균형을 이룰 수 있음을 확인하였다. 또한, 심실의 완전충만과 완전구출의 실현을 위한 심실 충만 정도를 추정할 수 있게 하는 인자를 제시하였다.

  • PDF