DOI QR코드

DOI QR Code

Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate

유연한 CNT Nanosheet 기판을 이용한 생체연료전지 Roll 제작

  • Sung, Jungwoo (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Lim, Geunbae (Department of Mechanical Engineering, Pohang University of Science and Technology)
  • 성중우 (포항공과대학교 기계공학과) ;
  • 임근배 (포항공과대학교 기계공학과)
  • Received : 2014.10.10
  • Accepted : 2014.11.17
  • Published : 2014.11.30

Abstract

The most promising application of the biofuel cells is implantable devices, so the biofuel cells should have an appropriate shape for the vascular vessel. We demonstrated the biofuel cell roll for using in tubes. MWNTs were aggregated by vacuum filtration on a nitrocellulose membrane filter, which was biocompatible and flexible. The MWNT aggregated nitrocellulose membrane used the electrodes of the biofuel cells because it was conductive as well as nanostuructured. Then, the membrane was rolled into the roll shape. The maximum power density of the biofuel cell roll was $7.9{\mu}W/cm^2$ at 153mV and 50 mM glucose. Also, the power density is expected to increase in its practical application if there is flow in the tube, which makes the transportation of fuel easy. The biofuel cell roll contacts with the wall of the tube, so flow in the tube does not disturb. Also, the biofuel cell roll has multi-layers offering more electroactive area.

Keywords

References

  1. E. Katz, I. Willner, and A. B. Kotlyar, "A non-compartmentalized glucose | O2 biofuel cell by bioengineered electrode surfaces", J. Electroanal. Chem., Vol. 479, No. 1, pp. 64-68, 1999. https://doi.org/10.1016/S0022-0728(99)00425-8
  2. I. Willner, "Biomaterials for sensors, fuel cells, and circuitry", Science, Vol. 298, No. 5602, pp. 2407-2408, 2002. https://doi.org/10.1126/science.298.5602.2407
  3. N. Mano, F. Mao, and A. Heller, "Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant", J. Am. Chem. Soc., Vol. 125, No. 21, pp. 6588-6594, 2003. https://doi.org/10.1021/ja0346328
  4. S. Calabrese Barton, J. Gallaway, and P. Atanassov, "Enzymatic biofuel cells for implantable and microscale devices", Chem. Rev., Vol. 104, No. 10, pp. 4867-4886, 2004. https://doi.org/10.1021/cr020719k
  5. Y. Yan, W. Zheng, L. Su, and L. Mao, "Carbon-nanotubebased glucose/O2 biofuel cells", Adv. Mater., Vol. 18, No. 19, pp. 2639-2643, 2006. https://doi.org/10.1002/adma.200600028
  6. Y. Liu, Y. Du, and C. M. Li, "Direct electrochemistry based biosensors and biofuel cells enabled with nanostructured materials", Electroanalysis, Vol. 25, No. 4, pp. 815-831, 2013. https://doi.org/10.1002/elan.201200555
  7. F. Gao, L. Viry, M. Maugey, P. Poulin, and N. Mano, "Engineering hybrid nanotube wires for high-power biofuel cells", Nat. Commun., Vol. 1, p. 2, 2010.
  8. T. Miyake, S. Yoshino, T. Yamada, K. Hata, and M. Nishizawa, "Self-regulating enzymenanotube ensemble films and rheir application as flexible electrodes for biofuel cells", J. Am. Chem. Soc., Vol. 133, No. 13, pp. 5129-5134, 2011. https://doi.org/10.1021/ja111517e
  9. M. G. Bellino and G. J. A. A. Soler-Illia, "Nano-designed enzyme-functionalized hierarchical metal-oxide mesoporous thin films: En route to versatile biofuel cells", Small, Vol. 10, No. 14, pp. 2834-2839, 2014. https://doi.org/10.1002/smll.201302616
  10. S. C. Wang, F. Yang, M. Silva, A. Zarow, Y. Wang, and Z. Iqbal, "Membrane-less and mediator-free enzymatic biofuel cell using carbon nanotube/porous silicon electrodes", Electrochem. Commun., Vol. 11, No. 1, pp. 34-37, 2009. https://doi.org/10.1016/j.elecom.2008.10.019
  11. F. P. Cardoso, S. A. Neto, L. B. Crepaldi, S. Nikolaou, V. P. Barros, and A. R. D. Andrade, "Biocathodes for enzymatic biofuel cells using laccase and different redox mediators entrapped in polypyrrole matrix", J. Electrochem. Soc., Vol. 161, No. 4, pp. F445-F450, 2014. https://doi.org/10.1149/2.041404jes
  12. A. Zebda, L. Renaud, M. Cretin, C. Innocent, F. Pichot, R. Ferrigno, and S. Tingry, "Electrochemical performance of a glucose/oxygen microfluidic biofuel cell", J. Power Sources, Vol. 193, No. 2, pp. 602-606, 2009. https://doi.org/10.1016/j.jpowsour.2009.04.066
  13. H. Ryu, W. Choi, T. An, J. Heo, and G. Lim, "Fabrication and calibration of pH sensor using suspended CNT nanosheet", J. Sensor Sci. & Tech., Vol. 22, No. 3, pp. 207-211, 2013. https://doi.org/10.5369/JSST.2013.22.3.207
  14. I. Kim, T. An, and G. Lim, "Organophosphorus compounds detection using suspended SWNT films", J. Sensor Sci. & Tech., Vol. 22, No. 5, pp. 346-351, 2013. https://doi.org/10.5369/JSST.2013.22.5.346
  15. J. H. Lee, Y. W. Nam, H. C. Jung, D. H. Baek, S. H. Lee, and J. S. Hong, "Shear induced CNT/PDMS conducting thin film for electrode cardiogram (ECG) electrode", Bio-Chip J., Vol. 6, No. 1, pp. 91-98, 2012.
  16. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, "Comparative study of carbon nanotube dispersion using surfactants", J. Colloid Interface Sci., Vol. 328, No. 2, pp. 421-428, 2008. https://doi.org/10.1016/j.jcis.2008.09.015
  17. Y. Zhong and R. V. Bellamkonda, "Controlled release of anti-inflammatory agent ${\alpha}$-MSH from neural implants", J. Control. Release, Vol. 106, No. 3, pp. 309-318, 2005. https://doi.org/10.1016/j.jconrel.2005.05.012